50 research outputs found

    On the theory of Josephson effect in a diffusive tunnel junction

    Full text link
    Specific features of the equilibrium current-carrying state of a Josephson tunnel junction between diffusive superconductors are studied theoretically in the 1D geometry. It is found that the Josephson current induces localized states of electron excitations in the vicinity of the tunnel barrier, which are a continuous analog of Andreev levels in a ballistic junction. The depth of the corresponding ``potential well'' is much greater than the separation between an Andreev level and the continuous energy spectrum boundary for the same transmissivity of the barrier. In contrast to a ballistic junction in which the Josephson current is transported completely by localized excitations, the contribution to current in a diffusive junction comes from whole spectral region near the energy gap boundary, where the density of states differs considerably from its unperturbed value. The correction to the Josephson current in the second order of the barrier transmissivity, which contains the second harmonic of the phase jump, is calculated and it is found that the true expansion parameter of the perturbation theory for a diffusive junction is not the tunneling probability Γ\Gamma itself, but a much larger parameter W=(3ξ0/4l)ΓW = (3\xi_0/4l)\Gamma.Comment: 8 pages, 5 Postscript figures, submitted to Low Temp. Phy

    Temperature dependence of the superheating field for superconductors in the high-k London limit

    Full text link
    We study the metastability of the superheated Meissner state in type II superconductors with k >> 1 beyond Ginzburg-Landau theory, which is applicable only in the vicinity of the critical temperature. Within Eilenberger's semiclassical approximation, we use the local electrodynamic response of the superconductor to derive a generalized thermodynamic potential valid at any temperature. The stability analysis of this functional yields the temperature dependence of the superheating field. Finally, we comment on the implications of our results for superconducting cavities in particle accelerators.Comment: 7.5 pages, 2 figure

    Loss of Andreev Backscattering in Superconducting Quantum Point Contacts

    Full text link
    We study effects of magnetic field on the energy spectrum in a superconducting quantum point contact. The supercurrent induced by the magnetic field leads to intermode transitions between the electron waves that pass and do not pass through the constriction. The latter experience normal reflections which couple the states with opposite momenta inside the quantum channel and create a minigap in the energy spectrum that depends on the magnetic field

    Current-voltage characteristic of narrow superconducting wires: bifurcation phenomena

    Full text link
    The current-voltage characteristics of long and narrow superconducting channels are investigated using the time-dependent Ginzburg-Landau equations for complex order parameter. We found out that the steps in the current voltage characteristic can be associated with bifurcations of either steady or oscillatory solution. We revealed typical instabilities which induced the singularities in current-voltage characteristics, and analytically estimated period of oscillations and average voltage in the vicinity of the critical currents. Our results show that these bifurcations can substantially complicate dynamics of the order parameter and eventually lead to appearance of such phenomena as multistability and chaos. The discussed bifurcation phenomena sheds a light on some recent experimental findings

    Vortex nucleation in rotating BEC: the role of the boundary condition for the order parameter

    Full text link
    We study the process of vortex nucleation in rotating two-dimensional BEC confined in a harmonic trap. We show that, within the Gross-Pitaevskii theory with the boundary condition of vanishing of the order parameter at infinity, topological defects nucleation occurs via the creation of vortex-antivortex pairs far from the cloud center, where the modulus of the order parameter is small. Then, vortices move towards the center of the cloud and antivortices move in the opposite direction but never disappear. We also discuss the role of surface modes in this process.Comment: 6 pages, 2 figure

    Re-entrant localization of single particle transport in disordered Andreev wires

    Full text link
    We study effects of disorder on the low energy single particle transport in a normal wire surrounded by a superconductor. We show that the heat conductance includes the Andreev diffusion decreasing with increase in the mean free path \ell and the diffusive drift produced by a small particle-hole asymmetry, which increases with increasing \ell. The conductance thus has a minimum as a function of \ell which leads to a peculiar re-entrant localization as a function of the mean free path.Comment: 4 pages, 2 figure

    Wigner distribution function formalism for superconductors and collisionless dynamics of the superconducting order parameter

    Get PDF
    A technique to study collisionless dynamics of a homogeneous superconducting system is developed, which is based on Riccati parametrization of Wigner distribution function. The quantum evolution of the superconductiung order parameter, initially deviated from the equilibrium value, is calculated using this technique. The effect of a time-dependent BCS paring interaction on the dynamics of the order parameter is also studied.Comment: 14 pages, 5 figure

    The dynamics of developing Cooper pairing at finite temperatures

    Full text link
    We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amplitude of the BCS order parameter averaged over the Boltzman distribution of initial states exhibits damped oscillations with a relatively short decay time. The latter is determined by the temperature, the single-particle level spacing, and the ground state value of the BCS gap for the new coupling. In contrast, the decay is essentially absent when the system was in a superfluid phase before the coupling increase.Comment: 4 pages, figure fixe

    Superheating fields of superconductors: Asymptotic analysis and numerical results

    Full text link
    The superheated Meissner state in type-I superconductors is studied both analytically and numerically within the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small κ\kappa, and have determined the maximum superheating field HshH_{\rm sh} for the existence of the metastable, superheated Meissner state as an expansion in powers of κ1/2\kappa^{1/2}. Our numerical solutions of these equations agree quite well with the asymptotic solutions for κ<0.5\kappa<0.5. The same asymptotic methods are also used to study the stability of the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal electrodynamics. Finally, we compare our numerical results for the superheating field for large-κ\kappa against recent asymptotic results for large-κ\kappa, and again find a close agreement. Our results demonstrate the efficacy of the method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity involving boundary layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.

    Flux penetration and expulsion in thin superconducting disks

    Full text link
    Using an expansion of the order parameter over the eigenfunctions of the linearized first Ginzburg-Landau (GL) equation, we obtain numerically the saddle points of the free energy separating the stable states with different number of vortices. In contrast to known surface and geometrical barrier models, we find that in a wide range of magnetic fields below the penetration field, the saddle point state for flux penetration into a disk does not correspond to a vortex located nearby the sample boundary, but to a region of suppressed superconductivity at the disk edge with no winding of the current, and which is {\it a nucleus} for the following vortex creation. The height of this {\it nucleation barrier}, which determines the time of flux penetration, is calculated for different disk radii and magnetic fields.Comment: Accepted for publication in Physical Review Letter
    corecore