6 research outputs found

    Spatial ecology and ontogeny: incorporating fish size-classes into species distribution models

    Get PDF
    I use spatial modelling to investigate how relative abundance and body-length can be used to identify niche requirements and habitat partitioning between conspecific fishes. The models identified specific areas associated with juveniles and adults of same or multiple fish species. I investigate the performance of models using data collected from towed and baited video systems. The towed video models detected fine-scale environmental niche associations of fish, which could be missed by commonly used baited systems

    Mesophotic fish communities of the ancient coastline in Western Australia

    Get PDF
    Marine diversity across the Australian continental shelf is shaped by characteristic benthic habitats which are determined by geomorphic features such as paleoshorelines. In north-western Australia there has been little attention on the fish communities that inhabit an ancient coastline at ~125 m depth (the designated AC125), which is specified as a key ecological feature (KEF) of the region and is thought to comprise hard substrate and support enhanced diversity. We investigated drivers of fish species richness and assemblage composition spanning six degrees of latitude along sections of the ancient coastline, categorised as ‘on’ and ‘off’ the AC125 based on depth, across a range of habitats and seafloor complexity (~60–180 m depth). While some surveyed sections of the AC125 had hard bottom substrate and supported enhanced fish diversity, including over half of the total species observed, species richness and abundance overall were not greater on the AC125 than immediately adjacent to the AC125. Instead, depth, seafloor complexity and habitat type explained patterns in richness and abundance, and structured fish assemblages at both local and broad spatial scales. Fewer fishes were associated with deep sites characterized by negligible complexity and soft-bottom habitats, in contrast to shallower depths that featured benthic biota and pockets of complex substrate. Drivers of abundance of common species were species-specific and primarily related to sampling Areas, depth and substrate. Fishes of the ancient coastline and adjacent habitats are representative of mesophotic fish communities of the region, included species important to fisheries and conservation, and several species were observed deeper than their currently known distribution. This study provides the first assessment of fish biodiversity associated with an ancient coastline feature, improving our understanding of the function it plays in regional spatial patterns in abundance of mesophotic fishes. Management decisions that incorporate the broader variety of depths and habitats surrounding the designated AC125 could enhance the ecological role of this KEF, contributing to effective conservation of fish biodiversity on Australia’s north west shelf

    Quantifying Patterns in Fish Assemblages and Habitat Use Along a Deep Submarine Canyon-Valley Feature Using a Remotely Operated Vehicle

    Get PDF
    The aim of this study was to document the composition and distribution of deep-water fishes associated with a submarine canyon-valley feature. A work-class Remotely Operated Vehicle (ROV) fitted with stereo-video cameras was used to record fish abundance and assemblage composition along transects at water depths between 300 and 900 metres. Three areas (A, B, C) were sampled along a submarine canyon-valley feature on the continental slope of tropical north-western Australia. Water conductivity/salinity, temperature, and depth were also collected using an ROV mounted Conductivity Temperature and Depth (CTD) instrument. Multivariate analyses were used to investigate fish assemblage composition, and species distribution models were fitted using boosted regression trees. These models were used to generate predictive maps of the occurrence of four abundant taxa over the survey areas. CTD data identified three water masses, tropical surface water, South Indian Central Water (centred ∼200 m depth), and a lower salinity Antarctic Intermediate Water (AAIW) ∼550 m depth. Distinct fish assemblages were found among areas and between canyon-valley and non-canyon habitats. The canyon-valley habitats supported more fish and taxa than non-canyon habitats. The fish assemblages of the deeper location (∼700–900 m, Area A) were different to that of the shallower locations (∼400–700 m, Areas B and C). Deep-water habitats were characterised by a Paraliparis (snail fish) species, while shallower habitats were characterised by the family Macrouridae (rat tails). Species distribution models highlighted the fine-scale environmental niche associations of the four most abundant taxa. The survey area had a high diversity of fish taxa and was dominated by the family Macrouridae. The deepest habitat had a different fish fauna to the shallower areas. This faunal break can be attributed to the influence of AAIW. ROVs provide a platform on which multiple instruments can be mounted and complementary streams of data collected simultaneously. By surveying fish in situ along transects of defined dimensions it is possible to produce species distribution models that will facilitate a greater insight into the ecology of deep-water marine systems

    Factors driving the biogeographic distribution of two temperate Australian damselfishes and ramifications for range shifts

    Get PDF
    The distribution and abundance of marine organisms is determined by interactions among numerous abiotic and biotic factors that operate across multiple spatial scales. This study focused on 2 endemic temperate damselfishes Parma microlepis and P. unifasciata, which have a similar ecology but only partially overlapping (~3° of latitude) biogeographical and depth ranges. The synergistic effects of temperature, competition and habitat use on patterns of abundance, distribution and growth were investigated using a combination of mensurative and manipulative field and laboratory experiments. Evidence suggests that the current ranges of both species are driven largely by latitudinal and depth variations in habitat types and not by thermal regimes. P. microlepis was shown to be a slower-growing, long-lived species (to 37 yr) that appears to be specialised in using urchin-grazed barrens. In contrast, P. unifasciata is a shorter-lived species (to 12 yr) and more of a habitat generalist. Where the ranges of these 2 species overlap, competitive interactions appear to drive patterns of habitat use, with P. microlepis potentially excluding P. unifasciata from urchin-grazed barrens habitat. Mesocosm laboratory experiments indicated that the outcome of competitive interactions between these 2 species is temperature-dependent, with P. microlepis dominance increasing at higher temperatures. This study clarifies the important role of habitat in determining latitudinal ranges of these 2 species. It also highlights the need to consider temperature-dependent behavioural interactions to properly understand future potential shifts in species ranges that may result from global climate change

    Depth gradients in abundance and functional roles suggest limited depth refuges for herbivorous fishes

    No full text
    As some types of disturbance to coral reefs are attenuated with depth, the resilience of herbivorous fish species utilizing shallow areas ( 30 m) reef areas. Scraper herbivores were associated with the reef crest (< 10 m), grazers with the reef slope (< 30 m), and browsers were evenly distributed across depth (4–70 m). Impacts to herbivores in shallow reefs (e.g. ocean warming, storms, fishing) may be ameliorated if species are widely distributed across depth, or have the ability to opportunistically relocate to adjacent undisturbed areas. Deeper habitat appears to support a subset of the herbivore community, by providing habitat and resources for the browser functional group (only herbivores capable of ingesting large macroalgae) and species with generalist depth distributions and known trophic flexibility (e.g. genus Scarus). Additional management of depth zones where functional group distributions overlap may maximize chances of sustaining herbivore diversity and functional redundancy, and provide enhanced protection across depth for important fished species such as large parrotfishes and unicornfishes

    Mesophotic benthic communities associated with a submerged palaeoshoreline in Western Australia

    No full text
    Key ecological features (KEFs) are elements of Australia’s Commonwealth marine environment considered to be important for biodiversity or ecosystem function, yet many KEFs are poorly researched, which can impede effective decision-making about future development and conservation. This study investigates a KEF positioned over the Last Glacial Maximum (LGM) shoreline on the northwest shelf of Australia (known as the ‘Ancient Coastline at ~125m depth contour’; AC125). Seafloor bathymetry, sedimentology and benthic habitats were characterised within five study areas using multibeam sonar, sediment samples and towed video imagery. Direct evidence for the existence of a palaeoshoreline formed during the LGM was not found, however candidate areas to find palaeoshoreline material at or just below the modern seabed were discovered. Approximately 98% of the seabed surveyed was comprised of unconsolidated soft sediment habitat (mud/sand/silt) supporting negligible epibenthic biota. The prevalence of soft sediment suggests that post-glacial sediments have infilled parts of the palaeoshoreline, with cross-shelf, probably tidal currents in the northern section of the study area responsible for some of the sediment mobilisation and southern study areas more influenced by oceanic conditions. Within study areas, total biotic cover ranged from 0.02% to 1.07%. Of the biota encountered, most comprised filter feeder organisms (including gorgonians, sponges, and whip corals) whose distribution was associated with pockets of consolidated hard substrate. Benthic community composition varied with both study area and position in relation to the predicted AC125. In general, consolidated substrate was proportionally higher in water shallower than the AC125 compared to on the AC125 or deeper than the AC125. Spatially continuous maps of predicted benthic habitat classes (pre-determined benthic communities) in each study area were developed to characterise biodiversity. Spatial modelling corroborated depth and large-scale structural complexity of the seafloor as surrogates for predicting likely habitat class. This study provides an important assessment of the AC125 and shows that if a distinct coastline exists in the areas we surveyed, it is now largely buried and as such does not provide a unique hard substrate habitat. However, much work remains to fully locate and map the ancient coastline within the vast region of the AC125 and additional surveys in shallow waters adjacent to the AC125 may identify whether some sections lie outside the currently defined KEF
    corecore