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Abstract 

The south-west coast of Australia is a well recognised global hotspot for terrestrial and 

marine biodiversity. The marine environment of this region is characterised by a high 

proportion of endemic species of demersal fish, invertebrates and algae. This region is also 

identified as a climate change hotspot with recently recorded unprecedented massive fish 

kills, southerly range extensions of tropical fish species and potentially permanent phase 

shifts of dominant temperate benthic ecosystems. With the frequency and intensity of 

environmental perturbations predicted to increase, identification of species-environment 

patterns across varying spatial scales can contribute to deeper understanding of spatial 

ecology of these threatened fish communities and improve local and regional management 

and climate change adaptation strategies. 

The niche requirements and habitat resource partitioning by conspecific fishes of different 

sizes is a knowledge gap in spatial ecology and fisheries management. Many fish species 

undergo ontogenetic shifts in habitat use throughout their life-history. Ontogenetic 

movements between and among habitats are often driven by the need to find sufficient food 

of an appropriate size to support growth, to seek out new shelter to support a larger body 

size, to avoid predation and to encounter other sexually reproductive fish. Therefore, the 

ability to move between habitat patches may have consequences for the survivorship of a 

species, particularly at vulnerable life-history stages. As such, knowledge about ontogenetic 

habitat shifts and other growth-dependent processes is crucial to understand the processes 

that underpin abundance patterns and community composition.  

The economic constraints often posed by limited resources for marine spatial management 

raise the question about what areas are most worthy of protection and what species could be 

used as ecological indicators of a phenomenon, or to monitor overall ecosystem health. 

Identifying key benthic areas that are crucial for multiple species of demersal fish, or for 

different life-history stages of same species (i.e. spawning grounds, fisheries refugia or 

nursery areas) may help to preserve vulnerable life-history stages of target species, optimise 

the limited resources for monitoring and management and to identify areas of high intrinsic 

value for spatial protection. 

To address the questions above I begin this thesis by examining the bioregional patterns of 

demersal fish assemblage composition along the south-west coast of Australia (chapter 2). I 

use Multivariate Regression Trees (MRT) and Distance-based Linear Models (DistLM) to 

identify significant biological and/or environmental variables that are most correlated to the 
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observed demersal fish assemblage patterns. Using multivariate statistical techniques on a set 

of 49 environmental variables I identify the six most influential variables (five benthic and 

one spatial variable) that combined explain 42 % of the variation in spatial patterns of fish 

community structure of demersal fish along 1600 km of this coast. In addition, using the 

MRT output, I identify key indicator species of each of the assemblages. These analyses 

reveal that the fish assemblages in the central part of the south-west are characterised by high 

proportion of endemic species that are closely associated with canopy forming seaweed 

habitats. These seaweeds have already been subject to large scale die-offs throughout the 

region. 

Using a subset of the indicator species that I have identified in chapter 2 and Generalised 

Additive Models (GAMs), I examine the habitat resource partitioning and environmental 

niche requirements of conspecific individuals of different body length (i.e. ontogeny; chapter 

3) and body mass (i.e. biomass; chapter 4). Continuous predictive rasters of individuals’ 

size/biomass distributions across a broader unsampled geographical area highlight habitat 

partitioning and difference in the environmental niche for the ecological indicator species 

(chapter 3) and the fishery indicator species (chapter 4) throughout their life-histories. In 

addition, predictive hotspot maps that I have created have helped to identify potential areas 

that are important for numerous species and/or for different life stages of multiple species 

(e.g. fish nurseries or spawning stock hotspots). When compared to models based on 

abundance datasets for the same species, the biomass models had higher explanatory power 

(adjusted R
2
). Using individual body length with ecological modelling can provide crucial 

information that link abundance patterns and community composition across benthic 

habitats. 

The usefulness of some of the long-established methods in combination with the novel 

ecological modelling approaches should be revised due to the biases they may introduce with 

respect to habitat associations of fish. In chapter 5 I compare occurrence models developed 

from data collected from stereo-BRUVs (Baited Remote Underwater Stereo Video systems) 

and towed stereo-video. Models developed for the towed stereo-video data had consistently 

better predictive performance then stereo-BRUVs. I conclude that this method of data 

collection was deemed to more likely reflect more realistic species-habitat relationships than 

from data collected with baited underwater video. The lower cost associated with using 

towed video system for data collection in low-relief seascapes is an additional reason for 

considering this method for marine spatial management purposes. 

In conclusion, I identified canopy forming seaweeds as being a crucial habitat which 

supports endemic fish assemblages in south-west Australia. This type of benthic habitat 
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requires close monitoring throughout the region because it has already been documented that 

human induced climate change is reducing the extent of this habitat. Habitat loss may 

compromise the demersal fish biodiversity and the resilience of other endemic marine 

communities in the region. I demonstrate that where there are limited resources for 

monitoring and management, predictive modelling can be a valuable tool for spatial 

management of coastal fish and fisheries by identifying areas and habitats that are important 

for multiple species and identifying previously overlooked processes such as ontogenetic 

habitat shifts. This novel approach can help researchers and managers to focus on areas of 

high intrinsic value for multiple species, thus saving limited resources for monitoring and 

management programmes. In addition, conservation efforts can be further improved by 

applying robust, cost-effective methods for rapid data collection such as the towed stereo-

video which can be useful for spatial ecological modelling.  
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Chapter 1 General Introduction 

1.1 Background and rationale 

1.1.1 Global biodiversity loss 

A worldwide decline in biodiversity associated with anthropogenic activities such as global 

warming, biological introductions and pollution may cause major changes in ecosystem 

function and have a negative impact on the provision of ecosystem services (Sala & 

Knowlton, 2006). Recent studies demonstrate that the effects of climate change associated 

with global warming can range from the response of individual species through to changes in 

biomes (Bellard et al., 2012). Typical species specific responses could be physiological and 

phenotypical shifts to adapt to a new set of local environmental conditions (Parmesan, 2006) 

or range shifts in order to maintain the current ecological niche (Poloczanska et al., 2007; 

Booth et al., 2009). Biome scale responses may include major community phase shifts and 

loss of ecosystem functioning (Verges et al., 2014; Bennett et al., 2015; Graham et al., 2015; 

Wernberg et al., 2016). Atmospheric carbon dioxide concentration and sea surface 

temperatures in the 21st century are predicted to reach levels that have not been experienced 

for tens of thousands of years (Hoegh-Guldberg et al., 2007). In response to the rapidly 

changing climate, the rates of biodiversity loss and homogenisation of communities are 

predicted to increase (Butchart et al., 2010; García Molinos et al., 2015).  

In the marine environment, the coastal fish communities are particularly vulnerable to 

anthropogenic influences such as overfishing and loss of habitat (Jackson et al., 2001). As a 

result, the decline in biodiversity can lead to poor water quality and fisheries collapse (Worm 

et al., 2006). At this stage, little is known about what effect local changes in biodiversity will 

have on the larger community processes at landscape levels. Current predictions about 

regional-scale concepts are still being drawn from the integration of smaller-scale 

observations (Buddemeier & Fautin, 2002). The threats to marine biodiverisity are often 

cumulative and poorly understood, generating multiscalar impacts on marine organisms and 

the habitats they occupy (Edgar et al., 2016). There is a need for new or improved tools to 

rapidly assess and predict the biogeographic patterns in marine ecosystems, and to generate 

knowledge that can be used in regional and national management strategies for mitigation of 

changes in demersal fish community structure and distribution as a result of climate change.  



 

2 

1.1.2 Knowledge gaps in the spatial ecology of fishes 

Environmental gradients are fundamental drivers of animal movements and their distribution 

across a landscape (Nathan et al., 2008). At large spatial scales, biogeographic variation in 

fish assemblages distribution and composition may be dictated by physiological tolerances to 

variations in temperature (Cheung et al., 2012), oceanic currents (Figueira & Booth, 2010) or 

evolutionary processes like speciation (Wellenreuther et al., 2008). Regional and fine-scale 

heterogeneity in habitat type (Anderson & Millar, 2004), depth (Nemeth & Appeldoorn, 

2009) and complexity (Hyndes et al., 2003) have been identified as important for influencing 

population dynamics and assemblage structure of demersal fish by moderating the effects of 

predation and competition (Jones, 1992). 

Species will preferentially select environmental conditions (i.e. environmental niche) that 

optimise their survival, growth, and reproductive success (Martinez-Meyer et al., 2013). The 

bio-physical environment and physiological responses of species along the environmental 

gradients are not always linear or intuitive, which influences predictions about species 

responses to climate change (Helmuth et al., 2005; Feary et al., 2014). Therefore, knowledge 

about environmental processes that influence the spatio-temporal occurrence and abundance 

of species (i.e. spatial ecology; Legendre and Fortin 1989) is fundamental for understanding 

the structure and function of populations (Tilman & Kareiva, 1997), and for effective 

conservation and management efforts (Stamoulis & Delevaux, 2015). Studying the 

abundance and distribution of demersal fishes in space can facilitate the identification of 

critical habitats (Schmiing et al., 2013) and an understanding of inter-specific interactions 

(Galaiduk et al., 2013). By knowing how human-associated activities influence fish 

populations and their essential habitat (Nye et al., 2009) it is possible to develop effective 

management and conservation plans (Wise et al., 2009).  

Until recently, data describing the distribution and abundance of marine organisms has been 

sparse, point-observations based, and expensive to collect (Edgar et al., 2016). Managers 

have been lacking the tools to adequately synthesise, visualise and extrapolate the limited 

data that is available to draw spatial conclusions about environmental health (Cooke et al., 

2016). A lack of knowledge about how the environment influences the spatial ecology of 

demersal fishes can bias population assessments and potentially lead to ineffective, or 

counterproductive management actions (Edgar et al., 2016).  



 

3 

1.1.3 The evolution of species distribution models in 

marine research  

Species distribution models (SDMs) have been used by spatial ecologists to quantify species-

habitat associations at broad geographical scales in both the terrestrial and marine 

environments (Guisan & Zimmermann, 2000; Pittman et al., 2007; Young & Carr, 2015). 

They are particularly useful in cases when there are limited resources for large scale spatial 

sampling, and where the knowledge of focal species is reduced to a few sampled locations 

(Costa et al., 2014). By combining SDMs and Geographic Information Systems (GIS) it is 

possible to extrapolate models into non-surveyed areas to provide insights into species-

habitat linkages. SDMs have been used to investigate patterns in fish occurrence, abundance 

and density (Moore et al., 2009; Monk et al., 2011; Harvey et al., 2013; Young & Carr, 

2015). This facilitates the identification of priority areas for protection and the development 

of zoned  marine management plans (Possingham et al., 2000; Pittman et al., 2007; 

Stamoulis & Delevaux, 2015). 

Among the various techniques currently available for remote video sampling of fish 

occurrence and assemblage composition, baited remote underwater stereo-video systems 

(stereo-BRUVs) are probably the most established. Stereo-BRUVs have been used to 

monitor individual species targeted by fisheries (Malcolm et al., 2015), fish assemblage 

composition (Malcolm et al., 2007; Harvey et al., 2013) and assemblage changes over space 

and time (Cappo et al., 2006; Terres et al., 2015), the impact of closed area management 

(Watson et al., 2007), and the impact of seismic surveys and oil spills 

(www.aims.gov.au/docs/research/ monitoring/seabed/video-monitoring.html; accessed 

March 2016). The combination of stereo-BRUVs data with fine-scale benthic habitat data 

from the remote sensing systems in the SDM framework (see Moore et al. 2009; Chatfield et 

al. 2010; Fitzpatrick et al. 2012; Terres et al. 2015 for examples) have become a powerful 

tool for understanding the relationships between demersal fish species and their 

environments (e.g. Pittman et al. 2009; Moore et al. 2010; Monk et al. 2011). In addition, the 

fine-resolution predictive maps generated from the modelling can provide an important layer 

for integrated coastal and marine planning (Leaper et al., 2012; Stamoulis & Delevaux, 

2015). However, there is a significant knowledge gap in species distribution modelling with 

respect to the size-specific habitat requirements and partitioning of habitat resources among 

conspecifics throughout life-history stages.  

http://www.aims.gov.au/docs/research/%20monitoring/seabed/video-monitoring.html
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1.1.4 The importance of considering life-history stages of 

fish in SDMs 

Many fish species occupy different habitats at different life-history stages (Jones, 1984a; 

Compton et al., 2012). As an individual fish grows, its morphology and behaviour changes, 

as does its prey size and type (Lukoschek & McCormick, 2001; Kimirei et al., 2013).This 

often requires the fish to change habitats to meet energy and resource needs (Huijbers et al., 

2015). Important life-history traits such as growth, mortality and longevity could be 

dependent on the ability of an individual to move between suitable habitats, which requires a 

degree of functional connectivity between habitats (Evans et al., 2014; Nagelkerken et al., 

2015). Inability to move between habitats is likely to impact survivorship of individuals or 

entire populations.  

From a fishery management perspective, facilitating successful spawning of target species is 

critical to maintaining self-sustaining and productive fisheries (Cooke et al., 2016). 

Intuitively, management efforts will concentrate on adult stock where major reproductive 

capacity could be invested in relatively few, old, large-size individuals that could produce 

exponentially more eggs than smaller size conspecifics (Larkin, 1978; Bohnsack, 1990). 

However, it is essential to consider patterns of connectivity across a mosaic of habitats and 

between all life-history stages of an exploited stock. The geographic distribution and 

productivity of juvenile habitats are important drivers for the spatial distribution patterns of 

adult populations, where source sink relationships exist (Huijbers et al., 2013). Without such 

consideration, management plans may not encompass the essential habitat requirements of 

different life stages of a range of targeted species (Schmiing et al., 2013). Therefore, it is 

important to identify patterns of distribution of fishes at various life stages and maintain 

connectivity between nursery areas and adult populations (Olds et al., 2014; Nagelkerken et 

al., 2015).  

SDMs that incorporate the identification of critical habitats for different life-history stages of 

targeted and non-targeted fish species will be more useful for effective management. Models 

based on individual body length can help our understanding of spatial ecology of the 

modelled species or to identify key areas of the seascape that are crucial for different life-

history stages of a single species or for multiple species (e.g. nursery areas). Mapping, 

followed by management or protection of such areas may result in higher survival of 

vulnerable life stages, depending on threats and  risks (Dugan & Davis, 1993). By preserving 

physical linkages between discontinuous habitats crucial for juvenile and adult populations 

and maintaining quality of nursery areas  it is possible to enhance the abundance of target 

and other fish species which rely on healthy ecosystem functioning (Olds et al., 2014). 
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Failure to do so can potentially lead to incomplete or incorrect identification of critical 

habitats for different life-history stages of fish (Moore et al., 2010; Nagelkerken et al., 2015; 

Cooke et al., 2016), affect the ecological realism of predictive modelling (Guisan & 

Zimmermann, 2000; Robinson et al., 2011) and potentially lead to ineffective or 

counterproductive management actions (Edgar et al., 2016).  

1.2 Research question 

The overarching goal of this research project is to utilise the individual body length 

measurements of demersal fish species in order to improve our understanding of 

environmental processes that best determine ontogenetic environmental niche partitioning 

among conspecific individuals throughout their life-history. Capitalising on the capabilities 

of spatial modelling and GIS, I synthesize the complex predictive models and maps into a 

simple visual aid for effective marine spatial management that allows the identification of 

essential fish habitat for any single and multiple species throughout their life-history (Figure 

1.1).  

 

Figure 1.1 Flow diagram outlining the background, rationale and structure of the thesis. 

I examine the biogeographic patterns in community structure and assemblage composition of 

demersal fish across a large number of explanatory environmental variables. This can help to 
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identify the most important environmental variables that are driving patterns of distribution 

in marine communities as well as key indicator species that are characteristic of each 

assemblage. I then develop individual models for a number of indicator species that already 

are, or should become an object of spatial management for ecological or commercial reasons. 

In these models, I incorporate measurements of individual’s body length to examine 

environmental niche requirements and habitat associations of the modelled species. Lastly, I 

examine some of the biases associated with using the baited underwater video method for 

collecting data for SDMs and compare the occurrence models developed from data collected 

using baited video and from an alternative towed stereo-video.  

1.3 Study area 

The work presented in this thesis was undertaken in south-western Australia  Figure 1.2). 

This region is a well recognised terrestrial (Hopper & Gioia, 2004) and marine (Roberts et 

al., 2002) global biodiversity hotspot and has been suggested as a conservation priority area 

(Myers et al., 2000).  

 

 Figure 1.2 Map of south-west Australia with colour-coded panels showing the specific study areas for 

each chapter.  

The stable geological and oceanographic history of the region has provided a relatively 

simple system in which speciation has been able to flourish along persistent environmental 
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gradients (Hutchins & Pearce, 1994; Langlois et al., 2012b) resulting in the unique fish 

communities that have formed over millennia. Some of the families, such as the labrids and 

monacanthids are characterised by high diversity, narrow biogeographic ranges and high 

habitat specialisation (Hutchins & Pearce, 1994; Fairclough, 2005; Harvey et al., 2013).  

However, the observed patterns and delicate balance of the entire region might be at risk due 

to synergetic effects of environmental and anthropogenic stressors. A steady increase in sea 

surface temperatures (SST) over the past 50 years has been observed for the West Australian 

continental shelf, indicating that this region is affected by SST change (Pearce & Feng, 

2007). In addition, extreme climatic events, such as the 2011 marine heat wave, can 

significantly change the biodiversity patterns of temperate seaweeds, sessile invertebrates 

and demersal fish (Wernberg et al., 2013, 2016). These extreme environmental perturbations 

are predicted to increase in both frequency and intensity over time (Pearce & Feng, 2007; 

Poloczanska et al., 2007). The resilience of local fish communities may be compromised by 

abrupt community reorganisation (Wernberg et al., 2011; Bennett et al., 2015) due to 

predicted (Cheung et al., 2012) and documented (Wernberg et al., 2016) tropicalisation of 

fish communities in the region. Given that limited range endemics, fisheries targets or 

resource specialist species are often the most vulnerable to ocean warming (Last et al., 

2011), knowledge about the environmental drivers and ecological niche requirements of such 

species is particularly crucial to develop adaptive fisheries management and conservation 

plans.  

Data for chapters 2 and 3 were collected along 1,600 km of coastline as a part of the Marine 

Futures project between March 2006 and February 2008 (see matrix-prod.its.uwa.edu.au/ 

marinefutures/research/project; accessed July 2016 for further project details). The project 

aimed to map the dominant marine habitats and conduct biodiversity surveys along the 

subtropical and temperate Western Australian coast to establish a baseline of key marine 

ecosystems. These surveys were performed within the shallow continental shelf waters 

(~100 m) between the Houtman Abrolhos Islands, 60 km offshore from the coast of Western 

Australia and Esperance on the south coast. The fieldwork for chapters 3 and 4 took place in 

December 2014 in Geographe Bay, located approximately 220 km south of Perth. Geographe 

Bay is the largest temperate water embayment in Western Australia with extensive cover of 

seagrass meadows. Part of the data used in these chapters was collected for the Marine 

Biodiversity Hub. Maps for each individual data chapter are presented in subsequent 

corresponding chapters, given that the survey aims and the experimental design differ 

between chapters.  
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1.4 Overview of data chapters 

Below I present a short overview of each data chapter. The data chapters in this thesis have 

been written as four manuscripts and formatted according to specific formatting 

requirements of the targeted journals. Thus, chapters have their own specific formatting 

style, introduction and aim sections and consequently may include some elements of the 

background information presented here. References for all chapters are consolidated into one 

reference section at the end of the thesis.  

1.4.1 Environmental factors driving bioregionalism 

In chapter 2, I investigate the environmental and biological drivers of highly endemic 

temperate demersal fish community patterns located within a hotspot region for increasing 

sea surface temperature. I use Multivariate Regression Trees (MRT) to identify benthic 

variables most correlated to observed patterns of demersal fish assemblage structure along 

1,600 km of coastline. Habitat associations and the proportion of the endemic species in all 

identified assemblages were examined and the Dufrêne-Legendre index (DLI) values on the 

MRT output calculated to identify those species most characteristic of each assemblage 

(Dufrene & Legendre, 1997). A subset of the identified indicator species were later used in 

the subsequent chapters of my thesis.  

1.4.2 Modelling ontogeny of demersal fishes 

In chapter 3, six of the key indicator species identified in the previous chapter are used to 

develop and validate a modelling approach to investigate the body-length driven 

environmental niche requirements and identify ontogenetic habitat shifts using SDMs. 

Generalised Additive Models (GAMs) are the most common and well developed method for 

investigating spatial ecology of fishes (Valavanis et al., 2008; Moore et al., 2009; Chatfield 

et al., 2010; Schmiing et al., 2013). GAMs were used to predict the validated models onto a 

spatial grid of the study area across approximately 200 km
2
. Using these maps, the habitat 

resource partitioning between the conspecifics of different life-history stages can be visually 

assessed and provide a decision support tool for spatial management of areas with high 

intrinsic value. Finally, I combine six predicted layers for individual species to identify the 

location of key areas such as fish nursery or multiple species aggregations spots over the 

entire study area.  
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1.4.3 Using fisheries indicator species for biomass 

modelling 

In chapter 4, the biomass estimates of individual fish obtained through body length 

measurements from the stereo-BRUVs are used with the modelling approach developed in 

the previous chapter to examine biomass-habitat associations of three iconic fishes which are 

highly prized by commercial and recreational fishers. I compare and contrast models 

developed for the individual fish biomass with models developed for abundance of the same 

species. In addition, I create continuous predictive distribution maps of the biomass of 

individual species as well as cumulative biomass maps to identify key areas for multiple 

species across the study area. Mapping size-specific ecological niche distributions of 

targeted fishes at regional spatial scale could be extremely relevant to informing marine 

spatial management and for designing successful fishery management strategies. 

1.4.4 Comparing two remote video survey methods for 

use with SDMs 

Chapter 5 is the final data chapter. Here, I examine how the commonly used stereo-BRUVs 

may impact SDMs. The accuracy and predictive power of models developed from the data 

collected with stereo-BRUVs could be affected because of the dispersal of the bait plume 

which is used to attract fish to a camera system. The distance that a fish travels to the 

cameras is unknown, resulting in the potential for the true fish-habitat relationships to be 

skewed. I examine the use of a towed stereo-video as an alternative method to collect data on 

fish-environment relationships. I compare variable selection, model performance and 

ecological niche predictions for models developed from each dataset. In addition, I assess the 

cost-effectiveness of each method for marine spatial management purposes. 
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Chapter 2 Regional-scale, environmental 

drivers of highly endemic, temperate fish 

communities located within a climate change 

hotspot 

2.1 Abstract  

Aim: To use detailed marine habitat maps and environmental data to identify important 

drivers of bioregional patterns of demersal fish assemblages, characterised by a high 

proportion of endemic species.  

Location: Near–shore marine environment of south-western Australia. This region is a 

globally recognised biodiversity and climate change hotspot.  

Methods: We used Multivariate Regression Trees (MRT) and Distance-based Linear Models 

(DistLM) to identify and model which biological and/or environmental variables, amongst 

an initial set of 49, were most correlated to observed patterns of demersal fish assemblage 

structure along 1,600 km of the southwest Australian coastline. Indicator species analysis 

was run on the MRT output to identify fish assemblage types associated with distinct 

combinations of environment and habitat. Results were correlated with expected levels of 

resilience to predicted changes in ocean temperature.  

Results: The most parsimonious model defined eight fish assemblage types and was 

constrained by five benthic variables and one spatial variable which together explained 42% 

of the variation in spatial patterns of fish community structure. Canopy forming seaweeds 

were the major benthic drivers and when found on structurally complex hard habitat, 

supported the highest diversity of species after sites dominated by hard coral cover. Indicator 

species analysis revealed that 28 out of 35 (80%) significant species for this habitat type 

were endemics with the fish assemblages associated with these habitats often spatially 

limited to 10’s or 100’s of kilometres.  

Main conclusions: Canopy forming seaweeds were identified as a key component of the 

habitat types favoured by high proportion of endemic fish species in the region. This benthic 

group has already been subject to catastrophic temperature related die-offs on reefs in the 

northern part of this study, indicating its vulnerability to temperature driven climate change. 
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The predicted changes can result in major regime shifts in temperate ecosystems as well as 

affect the associated commercial and recreational fisheries of iconic species in the region. 

2.2 Introduction 

Global declines in biodiversity driven by anthropogenic impacts such as burning of fossil 

fuels, deforestation and pollution are well documented (Butchart et al., 2010; Bellard et al., 

2012; Hooper et al., 2012). Such declines can lead to major changes in ecosystem function, 

and a reduction in the resilience of ecosystems to environmental change (Chapin III et al., 

2000; Sala & Knowlton, 2006). This loss of biodiversity and its flow-on effects extends to 

the marine environment where declining diversity has been closely linked to collapsing 

fisheries resources and poor water quality (Worm et al., 2006). Coastal fish communities 

have been particularly vulnerable, with serious declines in biodiversity through overfishing, 

eutrophication and loss of habitat (Jackson et al., 2001).  

While many disturbances are locally-driven, climate change is imposing impacts on marine 

communities at scales not previously seen, with temperature-driven coral bleaching at 

regional, national and global scales a poignant example of this (e.g. Hoegh-Guldberg, 1999; 

Hoegh-Guldberg et al., 2007). However, most research remains targeted at local scales with 

landscape level understanding still being drawn from the integration of smaller-scale 

observations and concepts (Buddemeier & Fautin, 2002). A recent review of climate change 

impacts on marine life in Australia (where this study is based) has highlighted the lack of 

studies on species at regional or national scales (Poloczanska et al., 2007). Given the 

potential for climate change to affect sea temperature and chemistry, ocean currents, wind 

and precipitation patterns over large areas (Harley et al., 2006; Poloczanska et al., 2007) 

there is a renewed need for large-scale biogeographic studies that integrate multiscalar 

environmental variables and quantify their influence on community structure and 

distribution.  

Australia’s temperate marine waters are unique for their disproportionately high levels of 

endemism, which persists across taxa. Long periods of climatic stability and geographic 

isolation have resulted in > 85% of fish, echinoderm and mollusc species, and 50% of algae 

species in southern waters being endemic (Poore, 2001; Roberts et al., 2002). The southwest 

region in particular is recognised as a global centre of endemism for fish, corals, snails and 

lobsters (Roberts et al., 2002). The fish communities along this coast are a unique 

combination of species of temperate origin, mixed with tropical and subtropical species that 

have migrated south under the moderating influence of the southward-flowing, Leeuwin 

current (Hutchins, 2001). While the species richness of some families such as the 
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monacanthids and labrids is particularly high (Harvey et al., 2013) the majority of members 

of these families are characterised by very narrow biogeographic ranges and high habitat 

specialisation (Hutchins & Pearce, 1994; Hutchins, 2001; Fairclough, 2005; Lek et al., 

2011).  

Sea surface temperatures (SST’s) have been increasing steadily along the south west coast of 

Western Australia for the past 50 years (Pearce & Feng, 2007), identifying this region as a 

climate change hotspot and hence pivotal location for observing the effects of rising 

temperatures on marine ecosystems. Extreme manifestations of this warming have already 

been seen, with a marine heatwave in 2011 pushing nearshore temperatures to ~5
0
C above 

average resulting in devastating fish kills and transient southerly range extensions of tropical 

fish species and megafauna such as whale sharks and manta rays (Pearce & Feng, 2013; 

Wernberg et al. 2012). With the frequency and intensity of such environmental perturbations 

predicted to increase (Pearce & Feng, 2007; Poloczanska et al., 2007) the resilience of 

regional temperate water fish communities may be further compromised with endemic 

species mostly at risk. 

Identification of significant species-environment patterns across varying spatial scales, and 

monitoring of shifts in these patterns relative to changing environmental conditions, can 

contribute significantly to local and regional climate change adaptation strategies. In this 

study, we set out to identify influential environmental and biological drivers of demersal fish 

assemblage patterns across 1,600 km of coastline covering four distinct bioregions in south-

western Australia. A focus on landscape-scale patterns provides insights into climate change 

effects at a scale commensurate with the scale at which these effects are unfolding, 

addressing a clearly identified need. More specifically, we sought to identify whether the 

endemic component of the fish assemblages in this region were being influenced by a more 

constrained set of environmental and/or biological variables. A better understanding of the 

habitats and general environmental conditions specific to endemic fish assemblages in this 

uniquely diverse region will further our understanding of the processes of speciation and 

extinction (Lawton, 1993; Mora & Robertson, 2005), enabling more focused and effective 

management. 

2.3 Methods 

2.3.1 Study area and data collection 

The coastline of Western Australia extends for almost 13,000 km, bordered by the Timor Sea 

in the north, Indian Ocean to the west and the Great Southern Ocean in the south (Cheung et 
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al., 2012). The Leeuwin Current is the dominant poleward-flowing tropical-water ocean 

current in this region. It transports the larvae of algae, invertebrates and tropical fishes south 

along the west coast and eastwards into the Great Australian Bight (Maxwell & Cresswell, 

1981). The stable geological and oceanographic history of the region has provided a simple 

system in which speciation has been able to flourish in both terrestrial and marine 

environments along persistent environmental gradients (Hutchins & Pearce, 1994; Hopper & 

Gioia, 2004; Langlois et al., 2012b). Benthic habitats in the region are dominated by rocky 

reefs interspersed with canopy forming kelp, fucalean and red algae communities (Wernberg 

et al., 2003).  

All fish and habitat data used in our analyses were collected as a part of the Marine Futures 

project (matrix-prod.its.uwa.edu.au/marinefutures/research/project; accessed July 2016). The 

project aimed to map the dominant marine habitats and conduct biodiversity surveys along 

the subtropical and temperate West Australian coast to establish a baseline of key marine 

ecosystems. These surveys were performed within the shallow continental shelf waters 

(~100m) at seven regions of Western Australia, spanning four distinctive bioregions in this 

area (Figure 2.1). To maintain consistency in the interpretation of our findings we employ 

the same ecosystem-based classification of marine and coastal environments of the south-

west region as was proposed in the Interim Marine and Coastal Regionalisation for Australia 

(IMCRA, 1998). 

2.3.2 Available environmental variables 

Hydroacoustic maps were developed after surveying approximately 1,400 km of the seafloor 

across the seven study regions between March 2006 and February 2008. Underwater towed 

video footage was also collected over > 210 linear km. The environmental database was 

constructed by combining the hydroacoustic maps, substrate and biological benthos 

observations from towed video imagery in a statistical modelling framework using 

Classification and Regression Trees (CARTS) to predict probabilities of occurrence of 

substrate and biota in areas with no observations (see Radford et al., 2008 for detailed 

methods on habitat modelling and uncertainty measures). For each area, all identified 

benthos classes with sufficient numbers of observations for modelling were mapped, 

including sediment texture and relief, reef structures, vegetation types, and different classes 

of sessile invertebrates, providing a total of forty five variables. These maps were used to 

develop sampling plans for baited remote underwater stereo-video systems (stereo-BRUVs) 

for fish surveys. The environmental variables for our analysis were extracted by querying an 

existing database and cross referencing it with the fish sampling data.  
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Figure 2.1 Map of the south-west coast of Western Australia (Geocentric Datum of Australia 

1994 equal-area projection) showing four bioregions: ABR, Abrolhos Islands; CWC, Central 

West Coast; LNE, Leeuwin-Naturaliste; WSC, WA South Coast. The insets show position of 

seven sampling regions: (a) Abrolhos islands; (b) Jurien Bay; (c) Rottnest Island; (d) Capes 

region; (e) Albany; (f) Bremer Bay; (g) Esperance. Positions of individual stereo-BRUVs 

surveys in each region are marked by grey circles. 

2.3.3 Sampling of fish assemblages 

We analysed demersal fish assemblages recorded by stereo-BRUVs and assessed their 

relationships to biotic and abiotic environmental variables that had been modelled from 

multibeam and towed video surveys along 1,600 km of the south-west region of the 

continental shelf of Western Australia (Figure 2.1). Locations for sampling with stereo-

BRUVs were chosen based on our overall goals of understanding fish biodiversity, benthic 

habitat relationships and frequency of occurrence. The modelled habitat maps, with 

probabilities of occurrence of various biota and substrate variables, were used to decide on 

locations for all sampling sites except those at the Abrolhos Islands, where timing meant 

stereo-BRUVs sampling was conducted before the habitat maps were completed. In this 

case, bathymetry alone was used for planning. To ensure sampling replication was 

appropriate, sampling was spatially stratified according to the size of the study area, benthic 
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habitat (substrate and biotic benthos) and depth (see Radford et al., 2008 and matrix-

prod.its.uwa.edu.au/marinefutures/research/project; accessed July 2016 for further details on 

site selection criteria). Within each combination of strata, sampling was randomly assigned 

and distance controls used to avoid spatial autocorrelation. The minimum separation distance 

of 500 m between the individual stereo-BRUVs is considered to be sufficient to minimise the 

possibility of attraction of individual fish between stations and keep the samples independent 

(Harvey et al., 2007). 

Design, calibration (Harvey & Shortis, 1995; Shortis et al., 2009) and use of the stereo-

BRUVs is presented in detail in the literature (Cappo et al., 2003). Each system was baited 

with approximately 800 g of crushed pilchards (Sardinops sagax), and lowered to the bottom 

for a 60 minute soak time. The video recordings from these deployments were analysed 

using the software EventMeasure (SeaGIS Pty Ltd). In order to avoid repetitive counts of 

individual fish in 1 hour long recordings, MaxN of individual species appearing at one time 

was used. This measure is considered to be conservative for estimating fish abundance 

(Cappo et al., 2003). All fish were identified to the lowest taxonomic level possible. The 

final dataset consisted of 1090 one-hour stereo-BRUVs deployments from which 54,908 

individual fish from 219 fish species were identified. This represents approximately 64 % of 

the total diversity of neritic species recorded for the south-west of Western Australia (Fox & 

Beckley, 2005). Due to the unidirectional flow of the Leeuwin current, we also included a 

distance along shore (Das) variable in the analyses to account for this directionality. This 

distance was calculated as the Euclidean distance from a single point located north from the 

northern-most sampling area to any point where a stereo-BRUVs survey was performed, 

using ArcMap 10.1 (Borcard et al., 2011). 

2.3.4 Data analyses 

The responses of species along environmental gradients are not always linear. Consequently, 

linear and non-linear multivariate analysis techniques were used to investigate patterns in the 

spatial distribution of demersal fish assemblages. Environmental variables were extracted 

from the benthic habitat maps by intersecting with the stereo-BRUVs sampling locations in 

the shared database along with latitude, longitude, depth and the Das variable. This provided 

a total of 49 predictive variables for each assemblage sampling record (Supplement 2.7.1).  

To avoid issues with correlation between explanatory variables in multiple linear regression 

analyses, Draftsman’s plots were created to examine continuous variable correlations. Where 

pairs of environmental variables had correlations greater than 0.7 one variable was excluded 

from the modelling (Moore et al., 2010). In addition, Variance Inflation Factor (VIF) 
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analysis was performed with cut off variance values below 3 accepted (Zuur et al., 2010). 

We used a distance-based linear model (DistLM) and a CY dissimilarity matrix to perform a 

preliminary exploration of relationships between demersal fish assemblages and the 

normalised environmental variables (Cao et al., 1997; Anderson et al., 2008). The CY index 

is an appropriate dissimilarity measure for analysis of community composition data covering 

large spatial areas where beta diversity is high and there are many sites with few species in 

common (Anderson & Thompson, 2004). It is also a sensitive measure of dissimilarity that 

provides equal weighting for different types of multivariate variation in species abundance 

with minimal bias (Cao et al., 1997). Uncommon or rare species which were recorded only 

once or twice in the entire dataset (31 % of total species records) were excluded from the 

analyses. Rare species tend to amplify importance of rare habitat types. By removing rare 

species we avoided grouping sites with a shared common absence of rare species, instead 

concentrating specifically on common habitats found throughout the region (Gust et al., 

2001). Backward model selection using AIC selection criterion was employed to obtain a 

preliminary model and to reduce a large number of predictors. The advantage of AIC when 

exploring variable contributions is that it tends to incorporate more variables within the 

model than other more strict selection criteria (Boyce et al., 2002). This enables all 

contributing variables to be considered based on the known ecology of species and, if 

needed, further tested by more parsimonious methods (Moore et al., 2010). A final list of 18 

environmental explanatory variables produced by the exploratory DistLM model to be used 

in future analyses and a short description of each retained predictor variables is presented in 

Table 2.1.  

To define hierarchies of groups of co-occurring species that form communities according to 

the influence of explanatory variables, we used multivariate regression trees (MRT) with the 

environmental variables chosen from the DistLM model (De’ath, 2002). MRT are a type of 

constrained clustering and a robust method for modelling complex linear and non-linear 

relationships (De’ath & Fabricius, 2000; De’ath, 2002). The CY dissimilarity matrix was 

calculated on the raw relative abundance data (excluding rare species) prior to running the 

MRT analysis. The most parsimonious tree was selected using cross-validation and the 1-SE 

rule (De’ath & Fabricius, 2000). Dufrêne-Legendre index (DLI) values were then calculated 

for all species across all leaves of the tree so that those species most typical of a node could 

be identified (Dufrene & Legendre, 1997). The DLI is defined as the product of the mean 

species abundance occurring in the group divided by the sum of the mean abundances in all 

other groups (specificity), multiplied by the proportion of sites within the group where the 

species occurs (fidelity), multiplied by 100 (DeVantier et al., 2006). 
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Table 2.1 Results of distance based linear model (DistLM; R2 = 0.25, AIC = 684) based on CY 

dissimilarity measure identifying the preliminary environmental variables using backward model 

selection procedure. These environmental variables were further used in the multivariate regression 

tree analysis. 

 

Each species is assigned to the leaf of the tree where its DLI value is highest. Species with 

the highest DLI values are considered representative of that assemblage, and the spatial 

extent of the assemblage indicated the region where the species was predominantly found 

(see DeVantier et al., 2006 for an example). This analysis was performed in R statistical 

software (R Core Team, 2014), using the packages mvpart, vegan and MVPARTwrap. 

To examine the main trends in ordination of multivariate ecological communities in the form 

of continuous axes we submitted the data to an unconstrained ordination analysis using 

Principal Coordinates Analysis (PCO) and a CY dissimilarity matrix in PRIMER v.6 (Clarke 

& Gorley, 2006). The PCO is particularly well adapted to analyse data from ecological 

Predictor Code Description & units 

Das Distance along shore. A relative distance in km along coastal gradient from an arbitrary 

point north of northern-most study site   

depth  Water depth in metres relative to the Australian Height Datum 

kelp The kelp Ecklonia radiata. Probability of occurrence between 0-1 

macalg Mixed canopy foming macroalgae. Probability of occurrence between 0-1 

othalg  Mixed unidentified algae. Probability of occurrence between 0-1 

seagrass Mixed seagrass. Probability of occurrence  between  0-1 

veget Mixed vegetation (i.e. seagrass and algae). Probability of occurrence  between  0-1 

scytot  The seaweed Scytothalia dorycarpa. Probability of occurrence  between  0-1 

rhodo Rhodolith beds (hard structures of coralline algae on sandy substrates).   

Probability of occurrence  between  0-1 

reef Mixed undifferentiated reef.  Probability of occurrence  between  0-1 

rfhigh High profile reef (relief greater than 4 m). Probability of occurrence  between  0-1 

rflow Low profile reef (relief less than 1 m). Probability of occurrence  between  0-1 

rfmed Medium profile reef (relief between 2 and 4 m). Probability of occurrence between 0-1 

obsrf Obscured reef (hard substrate covered with sand veneer). 

Probability of occurrence between  0-1 

sand Undistinguished fine sandy substrate. Probability of occurrence  between  0-1 

sed Unconsolidated sediment. Probability of occurrence  between  0-1 

grav Substrate that have clearly grainy nature. Probability of occurrence  between  0-1 

figrav Fine substrate of a clearly grainy nature. Probability of occurrence  between  0-1 
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communities, which are naturally structured along gradients (Borcard et al., 2011). 

Environmental vectors and the species correlations (raw Pearson correlations > 0.3) were 

overlayed onto the PCO plot in order to identify the strength and direction of the 

relationships identified. 

2.4 Results 

2.4.1 Patterns in fish assemblages 

DistLM analysis identified a model with 18 environmental variables, explaining 25 % of the 

variation in the data (R
2
 = 0.25, AIC = 684, Table 2.1). These environmental variables were 

used as explanatory variables in the multivariate regression tree analysis (MRT). The MRT 

explained approximately 42 % of the variation in the species abundance data with a more 

parsimonious model than the DistLM, identifying six key environmental variables from the 

18 submitted to the analysis. The final tree identified eight distinctive fish assemblages 

(Figure 2.2). The assemblage abbreviations, regional description and the list of Dufrêne & 

Legendre indicator (DLI) species are shown in Table 2.2.  

The primary split in the MRT occurred between assemblages where macroalgae cover was 

either high or low. Sites where macroalgae was sparse were further separated by distance 

along shore (Das ~ 93), which identified the sub-tropical Abrolhos Islands bioregion as a 

terminal node of the tree (ABR, Figure 2.2). The ABR, subtropical coral reef associated 

community is represented by a mix of reef, near-reef and sand dwelling species of Indo-

Pacific origin and endemic species (WA and Australia) dominated by two highly abundant 

species of the Nemipteridae and a single species of Pinguipedidae (Table 2.2). 

Sites with low algal cover south of the Abrolhos Islands bioregion were further split between 

reef and sand associated communities (sand ~ 0.89). The two leaves of the tree in the sand 

associated node separated western and eastern assemblages by distance along shore (Das ~ 

1553).
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Figure 2.2 Pruned (1SE) Multivariate Regression Tree defining relative abundance of fish communities (CY dissimilarity index) constrained by six environmental variables 

indicated in the tree (Error: 0.566; CV Error:0.58; SE: 0.015). The terminal nodes represent eight communities scattered across four bioregions: ABR, Abrolhos Islands; 

CWC, Central West Coast; LNE, Leeuwin-Naturaliste WSC, WA South Coast. Four indicator species with highest values of the Dufrêne-Legendre index (DLI) are shown for 

each terminal leaf as well as a silhouette of the highest DLI species. The high DLI values represent ‘indicative’ species of a particular assemblage. Additional details of node 

names and full species DLI are given in Table 2.2. 
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The western sand associated assemblage of Leeuwin-Naturaliste bioregion (LNE-sandy) was 

mostly represented by low relief and soft substrate endemic demersal species, including the 

Australian endemic species of gummy shark Mustelus antarcticus and the shovelnose 

stingaree Trygonoptera mucosa (Figure 2.2 and Table 2.2). The eastern sandy assemblage of 

WA south coast bioregion (WCS-sandy) was characterised by the Australian endemic 

toadfish Contusus brevicaudus (Figure 2.2). 

 

 

Figure 2.3 Principal coordinates analysis (PCO) on CY resemblance matrix of the relative abundances 

of fish communities in the 1090 survey sites and overlaid biplots of 18 normalised environmental 

variables (inset a) found significant in the DistLM and used in the MRT analyses, and the species 

affiliations vectors (raw Pearson correlations > 0.3; inset b). For convenience of interpretation, 

centroids of seven study regions are plotted and data range of individual regions is sketched. The 

length and direction of the vectors represent the strength and direction of the relationship. The 

separation along the PCO1 axis was based on occurrence of biotic features and topographic 

complexity and explained 20.3 % of total variation. The PCO2 axis explained 12.4 % of total variation 

and the separation of samples indicated a strong distance along shore and depth gradients with 

additional effect of various types of vegetative cover. The species vectors indicated higher affiliation 

to complex seascape environments. Additional details for environmental variables names and a short 

description are given in Table 2.1. 

The reef node of the tree was further separated into offshore reefs along central west coast 

bioregion with patches of vegetative cover (CWC-vegetation- reef) represented by high 

abundance of endemic species from the Kyphosidae and Labridae families. In contrast, high 

wave impact rocky reefs with low or no vegetative cover (LNE-reef) were characterised by 

assemblages dominated by the ubiquitous members of the Berycidae and Muraenidae 

families (Figure 2.2, Table 2.2). 
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The high macroalgae cover node of the tree was further split into a node with intermediate to 

high cover of rhodoliths (Rhodoliths ~ 0.025) and a terminal leaf identifying low relief, soft 

substrate and macroalgae associated community (Macroalgae-sandy-non-reef) with high 

abundance of Australian endemic species (Figure 2.2, Table 2.2). An additional split in the 

tree separated reef sites (Reef ~ 0.13) from the low relief sites. Australian endemic ocean 

leatherjacket Nelusetta ayraud was highly abundant in the macroalgae covered non-reef sites 

with rhodolith beds (Macroalgae-rhodoliths-non-reef), whereas coastal reef sites covered by 

macroalgae (Macroalgae-rhodoliths-reef) were mostly dominated by Australian endemic 

species from the Labridae and Dinolestidae families (Figure 2.2, Table 2.2). 

The two first axes of the unconstrained PCO explained almost 33 % of total variation in 

species relative abundance along the WA coast. The examination of overlayed eigenvectors 

of environmental variables portrayed sample separation along PCO1 axis based on positive 

association with an array of topographic complexity measures, such as various degrees of 

reef complexity. On the other hand, there were negative associations between the biotic 

features (seagrass, macroalgae and rhodoliths) and sample separation along the PCO1 axis. 

The separation along PCO2 axis was mainly negatively associated with depth and distance 

along shore and positively associated with various types of vegetative cover (Figure 2.3a, 

Table 2.1). The species vectors biplot have further demonstrated a high affiliation of species 

to reef and complex seascape environmental features, whereas none of the abundant species 

showed strong affiliation with low relief and deep water habitats (Figure 2.3b).  

2.4.2 Key indicator species and MRT clusters richness 

Across all terminal leaves of the MRT, only 6 % of species had a high DLI (≥50), while 

almost 23 % of species had moderately high DLI values (between 20 and 50). The CWC-

vegetation-reef, ABR, Macroalgae-sandy-non-reef and Macroalgae-rhodoliths-reef 

assemblages had a small to intermediate number of sites (1-18 % of total number of sites), 

however they dominated the DLI analysis. The most noticeable groupings were ABR and 

Macroalgae-rhodoliths-reef assemblages, comprising only 15 % and > 1 % of all sites 

respectively, but including 35 % and 26 % of total species with moderate to high DLI (Table 

2.2). These four assemblages and the LNE-reef assemblage, while spatially quite restricted, 

had relatively high species richness and were dominated by families associated with complex 

seabed structure such as subtropical and temperate reef habitats and/or macroalgae canopy 

cover (Figure 2.4). In addition, the complex relief and species rich assemblages of Central 

West Coast and Leeuwin-Naturaliste bioregions were characterised by high endemic species 

richness, while the Abrolhos Islands and Western Australian south coast bioregions had 

mostly low numbers of endemic species (Figure 2.4, Table 2.2).   
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Table 2.2 Summaries of all indicator species in the eight terminal fish communities of the multivariate regression tree (Figure 2.2). Values of the Dufrêne-Legendre index (0 < 

DLI ≤ 100) for each discriminant species are shown in brackets. The higher DLI value, the more ‘indicative’ the species is of a specific assemblage. The total number of sites 

and total number of the indicator species are shown for each terminal leaf. The asterisk symbols (*/**) next to DLI indicate WA/Australia endemic species respectively. 

Assemblage 

abbreviation 

Regional and 

environmental 

description 

No. 

of 

sites 

No. of 

DLI 

species 

Indicator species (DLI) 

CWC-

vegetation-reef 

Central coast, 

mixed seagrass 

and macroalgae, 

reef 

202 11 

Neatypus obliquus (43**), Coris auricularis (41*), Choerodon rubescens (24*), Chrysophrys auratus (19), 

Trygonoptera ovalis (18**), Plectorhinchus flavomaculatus (13), Gymnothorax woodwardi (11*), Heterodontus 

portusjacksoni (9), Glaucosoma hebraicum (7*), Scorpis georgiana (5**), Pictilabrus laticlavius (5**) 

LNE-reef 

Between Capes 

region and 

Esperance, reef 

275 2 Centroberyx lineatus (6), Gymnothorax prasinus (5) 

LNE-sandy 

Between Capes 

region and 

Esperance, sandy 

bottom 

128 3 Mustelus antarcticus (10**), Trygonoptera mucosa (8**), Allomycterus pilatus (6) 

WSC-sandy 
Esperance, sandy 

bottom 
118 1 Contusus brevicaudus (4**) 

ABR 
Abrolhos Islands 

region 
165 25 

Pentapodus nagasakiensis (75), Pentapodus vitta (66*), Parapercis nebulosa (62**),  

Parupeneus chrysopleuron (45), Torquigener vicinus (32), Lagocephalus sceleratus (32),  

Lethrinus genivittatus (21), Saurida spp (21), Caesioscorpis theagenes (19*), Choerodon jordani (13), 

Lethrinus miniatus (13), Diagramma labiosum (11), Chromis westaustralis (10), Carcharhinus obscurus (10), 

 Scarus schlegeli (9), Plectropomus leopardus (8), Chaetodon assarius (7*),  

Parupeneus spilurus (7), Scombridae spp (7), Ammotretis elongatus (5), Lethrinus nebulosus (5),  

Echeneis naucrates (4), Pentapodus porosus (4), Decapterus russelli (4), Rhynchobatus djiddensis (4) 
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Macroalgae-

sandy- non-reef 

Mixed 

macroalgae, 

sandy bottom, 

low complexity 

49 11 

Parequula melbournensis (54**), Trygonorrhina fasciata (38**), Upeneichthys vlamingii (20),  

Acanthaluteres spilomelanurus (20**), Suezichthys bifurcatus (19**), Meuschenia scaber (12),  

Scobinichthys granulatus (10**), Sillaginodes punctata (8**), Sillago spp (7), 

Anoplocapros amygdaloides (6**), Aptychotrema vincentiana (6**) 

Macroalgae-

rhodoliths-reef 

Mixed 

macroalgae, 

rhodolith beds, 

reef 

15 24 

Pseudolabrus biserialis (43*), Nemadactylus valenciennesi (39), Ophthalmolepis lineolatus (37**), 

 Dinolestes lewini (28**), Notolabrus parilus (24**), Pseudocaranx spp (20),  

Meuschenia flavolineata (18**), Meuschenia galii (18**), Meuschenia hippocrepis (17**),  

Odax cyanomelas (16**), Caesioperca rasor (16**), Bodianus frenchii (16),  

Chromis klunzingeri (15*), Epinephelides armatus (14*), Scorpis aequipinnis (13**),  

Achoerodus gouldii (10**), Hypoplectrodes nigroruber (10**),Centroberyx gerrardi (8**),  

Aulopus purpurissatus (8**), Austrolabrus maculatus (8**), Parascyllium variolatum (7**),  

Cheilodactylus nigripes (7), Omegophora cyanopunctata (5**), Othos dentex (5**) 

Macroalgae- 

rhodoliths-non-

reef 

Mixed 

macroalgae, 

rhodolith beds, 

low complexity 

138 3 Nelusetta ayraud (76**), Trachurus novaezelandiae (22), Myliobatis australis (11) 
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In contrast, LNE-sandy, Macroalgae-rhodoliths-non-reef, LNE-reef and WSC-sandy 

assemblages had moderate to high numbers of sites (11-25 % of total number of sites), but 

contained either single or no indicator species with moderate values (Table 2.2). With 

exception of the LNE-reef assemblage, such groups had mostly moderate to low species and 

endemic species richness. 

 

 
Figure 2.4 Mean species richness (■) and mean endemic species richness (□) +/- SE in eight fish 

assemblages resulted from the multivariate regression tree clusters and across four bioregions: ABR, 

Abrolhos Islands; CWC, Central West Coast; LNE, Leeuwin-Naturaliste; WSC, WA South Coast. 

The more structurally complex clusters are associated with higher endemic and overall species 

richness. 

These groups were dominated by mobile individuals from families mainly associated with 

low relief seascapes, such as sandy habitats with some degree of cover of macroalgae (LNE-

sandy, Macroalgae-rhodoliths-non-reef, WSC-sandy) or ubiquitous habitat generalist species 

that occur in high numbers elsewhere (LNE-reef). The south-east boundary of the study area 

had the lowest overall species richness and the lowest endemic species richness (Figure 2.4, 

Table 2.2).  

2.4.3 Spatial arrangement of the assemblages 

The spatial extent and arrangement of the demersal fish assemblages identified from the 

MRT along the south-western Australia coast are presented in Figure 2.5. The Abrolhos 

Islands bioregion was identified as a separate assemblage with only one site in the southern 
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part of this region belonging to another assemblage (LNE-sandy, Figure 2.5a). The 

assemblages along the south-west coast were spread from north to south and gradually 

changed from those associated with the limestone reefs and vegetative cover characteristic of 

the Central West Coast to those associated with the granite reefs dominating the Leeuwin 

Naturaliste bioregion (Figure 2.5b-e). In addition, two fundamentally different assemblages 

were observed between western and eastern sites of the Capes region (Figure 2.5d). There 

was a clear change in dominance between assemblages on the south and south-west coasts 

that occurred between Albany and Bremer Bay (Figure 2.5e-f). This change closely aligns 

with the existing bioregions (Figure 2.1). Reef associated assemblages were replaced by 

macroalgae associated assemblages of the southwest and in turn by unique sand associated 

assemblages of the south coast bioregion (Figure 2.5e-g). 

2.5 Discussion 

Spatially extensive studies that parallel the landscape scales at which climate change is 

influencing the natural environment remain pivotal to understanding how regional 

communities will respond. Our study utilized data from 1,090 stereo-BRUVs samples that 

recorded ~ 55,000 individuals belonging to 219 demersal fish species spanning 1,600 km of 

the south-west Australian coast, inclusive of four bioregions (sensu IMCRA, 1998). MRT 

identified six key variables, one spatial (Distance along shore), three biological (macroalgae, 

rhodoliths, vegetation) and two geomorphological (sand, reef), which together explained 

42 % of the observed variation in the demersal fish assemblage composition over the study 

area. The percentage of variation explained in this study was up to 18 % greater than three 

other similar large-scale studies undertaken within the same broader region (see Cappo et al., 

2007; Langlois et al., 2012; Harvey et al., 2013) implying that our analytical approach had a 

great ability to discriminate the principal drivers of fish assemblage structure. 

The most parsimonious MRT model defined eight fish assemblage types constrained by 

various combinations of the six significant explanatory variables. These assemblages were 

nested within our seven sampling regions with only the Abrolhos region containing a single 

assemblage type, defined by the most southerly extension of true coral reefs along this 

coastline (Smith, 1981). Presence of macroalgae was the primary driver of fish assemblage 

types explaining 13% of the total variation in the observed patterns, equating to 30 % of the 

variation explained by our model. This result concurs with earlier work in the region which 

found macroalgae to be a significant driver of spatial variation in local fish assemblages in 

the Recherche Archipelago which lies on the south-easterly fringe of our study area (Harvey 

et al., 2013). 
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Figure 2.5 Spatial distribution of eight fish assemblages (Geocentric Datum of Australia 1994 equal-

area projection) obtained from the multivariate regression tree analysis across seven sampling regions: 

(a) Abrolhos islands; (b) Jurien Bay; (c) Rottnest Island; (d) Capes region; (e) Albany; (f) Bremer 

Bay; (g) Esperance within four bioregions: ABR, Abrolhos Islands; CWC, Central West Coast; LNE, 

Leeuwin-Naturaliste; WSC, WA South Coast. The assemblage symbols are scaled by species richness. 
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Of the 910 sites included in our final model 22 % (202) had fish assemblages significantly 

associated with the presence of macroalgae. These habitats were spatially constrained to only 

two regions; the Capes and Bremer Bay (Figure 2.5), where DLI indices indicated that their 

associated fish assemblages contained the greatest number of endemic species and the 

highest overall species richness (see Figure 2.4). 

As sessile organisms with limited dispersal capabilities seaweeds have been identified as 

being particularly sensitive to climate change (Wahl et al., 2015; Wernberg et al., 2016). 

Light penetration and the requirements for seaweeds to photosynthesise eliminate the 

possibility of depth refugia for seaweeds and southerly range extensions are not possible 

because of the lack of habitat to the south of the Australian mainland. This provides limited 

opportunities for species to shift their geographical ranges poleward in response to sea 

surface temperature warming, resulting in a narrowing of geographical ranges (Wernberg et 

al., 2011). Mixed algal communities also become more monospecific with increasing 

temperature (Wernberg et al., 2011) with weedy species outcompeting the larger canopy-

forming algae that are primary habitat providers for their associated fish assemblages 

(Gorman & Connell, 2009). 

Endemism and habitat specialisation in this region has been attributed to the unique 

oceanography associated with Australia's boundary currents, and climatic stability over 

geological timescales (Adey & Steneck, 2001; Phillips, 2001; Kerswell, 2006). These same 

traits in demersal reef fish assemblages of southwest Australia are now recognised as 

indicators of vulnerability to extinction (Bender et al., 2013; Harvey et al., 2013). Nearly 

41 % of the species recorded in this study were endemic either to Australia or Western 

Australia with life-histories, age and growth patterns of many of them still being unknown. 

However, some of the endemic species recorded clearly had traits that made them vulnerable 

to extinction, such as the long lived foxfish Bodianus frenchii (up to 78 years; Cossington et 

al., 2010) or long lived, slow growing endemics Achoerodus gouldii (up to 70 years; Coulson 

et al., 2009) and Othos dentex (up to 37 years; French et al., 2014). 

Habitat loss, modification of habitat type or structural complexity become a common reason 

for changes in fish assemblage composition, rather than direct disturbance effect on the fish 

assemblage (Halford et al., 2004). Recent studies in the region demonstrate range contraction 

of 120 km in the northern range of kelp-dominated temperate reefs in the south-western 

Australia and climate mediated rapid regime shift to subtropical and tropical waters 

associated communities of seaweeds, invertebrates and fishes (Bennett et al., 2015; 

Wernberg et al., 2016). Whether the affected fish communities will shift their distribution 

further south and into the Great Australian Bight at this stage remains unclear.  
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In addition, the ecological changes may consequentially bear significant economic and social 

impacts to the commercial and recreational fisheries of species associated with the affected 

habitats. Some of the most iconic fishes targeted by commercial and recreational fisheries 

along the Central West Coast bioregion (e.g. Glaucosoma hebraicum, Chrysophrys auratus 

and Choerodon rubescens) were found in this study to be primarily associated with mixed 

vegetation covered reefs. A combined catch for these 3 species in the Central West Coast 

bioregion for the 2005/2006 season was well over 200 tonnes (Department of Fisheries, 

2007). Limited biogeographic ranges in combination with the demographic attributes, where 

movement patterns of adults are typically limited by the extent and continuity of suitable 

habitat to which they first settle (Lenanton et al., 2009), could make these populations even 

more vulnerable to depletion. 

The DLI identified a number of species which are characteristic of the key fish assemblages 

identified by the MRTs. These indicator species include both targeted by fisheries and non-

targeted species, some of which may be vulnerable to climate associated changes (such as 

limited range endemic species). All the identified species could be used as surrogates 

(Harman et al., 2003) or ecological indicators (Garcia et al., 2000) for assessing health and 

stress responses of an entire fish assemblage and identifying significant changes in existing 

patterns of species richness and assemblage composition in the habitats they live in. 

2.6 Conclusions 

This study was able to demonstrate that species assemblage composition and 

biogeographical ranges in south-western Australia are influenced by a hierarchy of biotic and 

abiotic processes, including habitat availability, habitat complexity and indirect effects of 

temperature and/or oceanic currents, interacting at multiple spatial scales which often 

resulted in narrow environmental niche extents. Fish assemblages that were associated with 

structurally complex habitats, such as canopy forming seaweeds or reef, had more endemic 

species, high species richness and a higher proportion of key indicator species associated 

with these habitats. The composition and resilience of these assemblages may be prone to 

dramatic changes due to range contraction of habitat forming seaweeds and range expansion 

of tropical herbivores, causing further tropicalisation of this unique bioregion. The predicted 

changes can result in major regime shifts in temperate ecosystems as well as affect the 

associated commercial and recreational fisheries of iconic species in the region. Recent 

advances in macroecology, statistical analysis, and the compilation of global data will play a 

central role in improving conservation outcomes in an era of rapid global change (Edgar et 

al., 2016).  
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2.7 Supplementary material 

Supplement 2.7.1 Description of the full set of environmental variables derived from bathymetry and 

used in data analysis 

Predictor Code Description & units 

Das Distance along shore. A relative distance in km along coastal gradient from an arbitrary 

point north of northern-most study site  

depth  Water depth in metres relative to the Australian Height Datum 

kelp The kelp Ecklonia radiata. Probability of occurrence between 0-1 

macalg Mixed canopy foming macroalgae. Probability of occurrence between 0-1 

othalg  Mixed unidentified algae. Probability of occurrence between 0-1 

seagrass Mixed seagrass. Probability of occurrence  between  0-1 

veget Mixed vegetation (i.e. seagrass and algae). Probability of occurrence  between  0-1 

scytot  The seaweed Scytothalia dorycarpa. Probability of occurrence  between  0-1 

rhodo Rhodolith beds (hard structures of coralline algae on sandy substrates).   

Probability of occurrence  between  0-1 

reef Mixed undifferentiated reef.  Probability of occurrence  between  0-1 

rfhigh High profile reef (relief greater than 4 m). Probability of occurrence  between  0-1 

rflow Low profile reef (relief less than 1 m). Probability of occurrence  between  0-1 

rfmed Medium profile reef (relief between 2 and 4 m). Probability of occurrence between 0-1 

obsrf Obscured reef (hard substrate covered with sand veneer). 

Probability of occurrence between  0-1 

sand Undistinguished fine sandy substrate. Probability of occurrence  between  0-1 

sed Unconsolidated sediment. Probability of occurrence  between  0-1 

grav Substrate that have clearly grainy nature. Probability of occurrence  between  0-1 

figrav Fine substrate of a clearly grainy nature. Probability of occurrence  between  0-1 

asp Aspect, circular azimuthal direction of the steepest slope, calculated on 3*3 pixel area 

curv Curvature,  Combined index of profile and plan curvature 

hyp5^ Indicator whether a cell is a high or low point within the local neighbourhood (12.5 m 
radius)  

hyp10^ Indicator whether a cell is a high or low point within the local neighbourhood (25 m 
radius)  

hyp25^ Indicator whether a cell is a high or low point within the local neighbourhood (62.5 m 

radius)  

hyp50^ Indicator whether a cell is a high or low point within the local neighbourhood (125 m 

radius)  

morb5^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 

residuals from a linear trend surface (12.5 m radius) 

morb10^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 
residuals from a linear trend surface (25 m radius)  

morb25^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 
residuals from a linear trend surface (62.5 m radius)  
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^ Local neighbourhood analysis:  run on circles of kernel pixel radius 5, 10, 25, 100 original cell size 
is 2.5 m 

 

 

Postscript: In the next chapter I use a subset of the key indicator species that I have 

identified in this chapter to develop a modelling approach for examining the ontogenetic 

environmental niche requirements of conspecific individuals. 

 

morr5^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 
residuals from a linear trend surface (12.5 m radius) 

morr10^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 

residuals from a linear trend surface (25 m radius)  

morr25^ A weighted correlation coefficient used to detect spatial dependence. Calculated on the 

residuals from a linear trend surface (62.5 m radius) 

plan Plan curvature.  Secondary derivative of elevation. Measure of concave/convexity 
perpendicular to the slope. Calculated on 3*3 pixel area 

prof Profile curvature. Secondary derivative of elevation. Measure of concave/convexity 
parallel to the slope. Calculated on 3*3 pixel area 

resid Depth residuals, depth minus trend 

rng5^ Range (local relief).  Maximum minus the minimum elevation in the local 
neighbourhood of 12.5 m radius 

rng10^ Range (local relief).  Maximum minus the minimum elevation in the local 

neighbourhood of 25 m radius 

rng25^ Range (local relief).  Maximum minus the minimum elevation in the local 

neighbourhood of 62.5 m radius 

rng50^ Range (local relief).  Maximum minus the minimum elevation in the local 

neighbourhood of 125 m radius 

slp Slope. First derivative of elevation. Average change in elevation,  calculated on 3*3 
pixel area 

snip Snippets. Second return from multibeam, indicator of sediment texture, density 

std5^ Standard deviation of depth within a neighbourhood (12.5 m radius) 

std10^ Standard deviation of depth within a neighbourhood (25 m radius) 

std25^ Standard deviation of depth within a neighbourhood (62.5 m radius) 

std50^ Standard deviation of depth within a neighbourhood (125 m radius) 

trend Trend.  The linear trend calculated across the bathymetry dataset 

rfflat Flat reef. Probability of occurrence  between  0-1 

harcor Undifferentiated hard coral. Probability of occurrence: 0-1 

si Undifferentiated sessile invertebrates. Probability of occurrence: 0-1 

easting Geographic coordinate 

northing Geographic coordinate 
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Chapter 3 Characterizing ontogenetic habitat 

shifts in marine fishes: advancing nascent 

methods for marine spatial management 

3.1 Abstract 

The niche requirements and habitat resource partitioning by conspecific fishes of different 

sizes remain significant knowledge gaps in the species distribution modelling domain. 

Management efforts are typically concentrated on static habitats, or specific areas of interest, 

without considering movement patterns of species associated with ontogenetic shifts in 

habitat use. The body length-habitat relationships of six fish species were modelled using 

Generalized Additive Models. These models were used to identify subsets of environmental 

parameters that drive the continuous length-habitat relationships for study species with 

varying degrees of ecological and commercial importance. In addition, these models were 

used to create continuous predictive maps of the length distributions for the six study species 

across approx. 200 km
2
 of the study area. The spatial patterns in habitat partitioning by 

individuals of different body lengths provide strong evidence for ontogenetic shifts for all six 

study species. This highlights the importance of considering ontogenetic processes for 

marine spatial management. Importantly, predictive hotspot maps were created that identify 

potential areas that accumulate individuals of similar life stages for multiple species (e.g. 

multispecies nursery areas). Where there are limited resources for monitoring and 

management, predictive modelling can be a valuable tool for studying previously overlooked 

processes such as ontogenetic habitat shifts. They provide crucial information that link 

abundance patterns and community composition across benthic habitats. This novel 

technique can contribute to the spatial management of coastal fish and fisheries by 

identifying areas that are important for multiple fish species and/or for different life history 

stages. 

3.2 Introduction  

The biogeographic distribution, assemblage composition and the abundance of marine 

organisms is known to be tightly associated with habitat type, its complexity and variability 

(Halpern et al., 2005; Kingsford & Carlson, 2010). The habitat is defined as an arrangement 

of environmental conditions that influences responses in the presence, abundance, growth 

and other important life-history traits of an organism (i.e. environmental niche, Hutchinson 
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1957; Martinez-Meyer et al. 2013). Habitat associations can vary among species and also 

within life history stages of the same species (Jones, 1984a; Compton et al., 2012). Species 

that are habitat specialists are inherently more susceptible to changes in habitat quality and 

cover as a result of climate change or other antropogenic stressors, such as sedimentation and 

eutrophication (Munday, 2004). This is particularly relevant for species that are dependent 

on a specific habitat for juvenile recruitment (Jones et al., 2004). For example, when canopy 

forming macroalgal fields and coral reefs co-occur, macroalgal fields can serve as 

recruitment and juvenile habitats for fish taxa that are typically associated with coral reefs as 

adults (Evans et al., 2014). 

Many fish species undergo ontogenetic shifts in their habitat use and exhibit a degree of 

habitat specialization (Halpern et al., 2005; Fitzpatrick et al., 2012). Patterns in life history 

traits such as growth, mortality and longevity can vary within a single species of fish in 

association with subtle differences in habitat structure (Gust et al., 2001; Figueira et al., 

2008). These variable size-species distribution patterns have particular implications for 

species that are the object of spatial management, whether for ecological or economic 

reasons. To address this ecologically important, but poorly studied topic in the spatial 

ecology realm, the novel approach introduced by Nagelkerken et al. (2015) was adopted. In 

this approach, a mosaic of functionally connected habitats creates a spatially explicit unit 

that allow animals to move from one patch to another as their requirements for food or 

shelter change (Nagelkerken et al., 2015). Ontogenetic habitat shifts are identified as one of 

the mechanisms that connect hotspots of animal abundance within a habitat mosaic. 

Marine spatial management benefits from an understanding of species-habitat relationships 

such that the design and placement of spatial area closures can be optimized (e.g. 

Possingham et al. 2000). However, large scale spatial sampling is often limited by resources 

for monitoring and assessment, thus reducing knowledge of fish abundance to a few sampled 

locations (Costa et al., 2014). Being able to reliably predict this information across broader 

geographical areas is thus important, relevant and instructive (Schmiing et al., 2013). To this 

end, species distribution models are a powerful tool, as they combine observations of species 

occurrence or abundance with environmental and/or spatial variables. Species distribution 

models are widely used in terrestrial, freshwater and marine environments to support spatial 

planning arrangements (Elith & Leathwick, 2009; Moore et al., 2009). Furthermore, the 

results of predictive modelling can be readily illustrated in GIS and areas of specific interest 

for spatial management identified for individual or multiple species (Schmiing et al., 2013; 

Costa et al., 2014). 
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Generalized Additive Models (GAMs) are particularly suitable for predicting complex, often 

non-linear responses of marine species to environmental predictors (Leathwick et al., 2006). 

They have become the most common method for modelling fish-habitat relationships 

(Valavanis et al., 2008; Schmiing et al., 2013). Therefore, they are the natural choice to 

examine the size-specific shifts in habitat use or partitioning of habitat resources among 

conspecifics. This topic has received little attention in species distribution modelling (but see 

Lauria et al. 2011; Martin et al. 2012 for examples using GLMs). Models of size specific 

habitat associations can help to identify key areas of the seascape that are crucial for 

different life-history stages of a single species or for multiple species (e.g. nursery areas). 

Mapping, followed by management or protection of such areas may result in higher survival 

of vulnerable life stages (Dugan & Davis, 1993), and by preserving seascape connectivity 

patterns between nursery areas and adult populations it is possible to enhance the abundance 

of target and other fish species which rely on healthy ecosystem functioning (Olds et al., 

2014). 

This study set out to improve our understanding of the spatial ecology of the modelled 

species by identifying environmental parameters that best determine ontogenetic 

environmental niche partitioning among conspecific individuals. The body length 

measurements of individual fishes were modelled utilizing GAMs in order to produce 

predictive maps of the continuous spatial distributions of conspecifics across the study area. 

In addition, created predictive hotspot maps can help to identify critical areas for different 

life-history stages. Using these maps we aim to synthesize complex patterns into a simple 

single GIS layer resource for effective spatial management. This novel approach of 

modelling continuous body length of individual fishes in combination with the flexibility of 

GAMs is likely to improve the ecological realism of predictive modelling, the robustness and 

parameter performance of spatial models (Guisan & Zimmermann, 2000; Robinson et al., 

2011), and the appeal of quantitative spatial ecology to marine resource managers. 

3.3 Materials and methods 

3.3.1 Study area 

The Houtman Abrolhos Islands (hereafter HAI) are four clusters of islands (consisting of a 

total of 122 islands) approximately 60 kms offshore of the central-west coast of Western 

Australia. The islands run parallel to the mainland in a north–south orientation and span 

~100 km. They exhibit a high species diversity of fishes with 184 species recorded, 

belonging to 42 genera derived from both tropical and temperate origins (IMCRA, 1998). 

The warm, southward flowing Leeuwin Current supports the southernmost coral reefs in the 
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Indian Ocean, giving this location a unique blend of temperate, tropical and Western 

Australian endemic fish species (Hutchins, 2001; Watson et al., 2009). This biodiversity rich 

area is influenced by environmental changes (Bornt et al., 2015) including a recent marine 

heat wave (Pearce & Feng, 2013). We surveyed the fish assemblage composition and 

developed detailed habitat maps in two areas that are open to fishing. Area 1 to the north of 

the Pelsaert Island group and Area 2 to the east of the Easter group (Figure 3.1). 

 

Figure 3.1 Map of the two study areas, north of the Pelsaert Group (Area 1) and east of the Easter 

Group (Area2). Inset: general location of the Houtman Abrolhos Archipelago off the coast of Western 

Australia. 

3.3.2 Fish data collection and study species selection 

Baited remote underwater stereo-video systems (stereo-BRUVs) were used to survey fish 

assemblages in the study area between the 15 and 19 May 2007. Design, calibration and use 

of the stereo-BRUVs are presented in detail in Harvey and Shortis (1995, 1998) and Harvey 

et al. (2013). To ensure that sampling replication was appropriate, sampling was spatially 

stratified according to the size of the study location and depth. In addition, sampling was 

randomly assigned and distance controls used to avoid spatial autocorrelation between 

samples (see Radford et al. 2008 for further details on site selection criteria). A total of 195 

video recordings were analysed using the software EventMeasure Stereo (SeaGIS Pty Ltd). 

http://www.marinefutures.fnas.uwa.edu.au/__data/assets/pdf_file/0008/624626/MF_Site_Selection_Wsh_Report_final.pdf
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The species chosen for modelling where amongst the most abundant species in the study area 

characterised by contrasting life histories, and/or were ecologically or commercially 

important (Table 3.1). The fork length was measured with precision constraints set to a 10 % 

cut off, which is achievable using stereo-BRUVs (Harvey & Shortis, 1995; Harvey et al., 

2002).  

3.3.3 Habitat mapping  

Approximately 200 km
2
 of the seafloor in the study area between depths of 10 and 40 m was 

hydroacoustically surveyed using a Reson 8101 Multibeam (Fugro Pty Ltd) between the 15 

and 23 November 2006. In addition, underwater towed video footage was collected over 

more than 100 linear km between the 3 and 8 March 2007. The hydroacoustic surveys 

provided bathymetric information and a coarse distinction between various substrate 

textures, whereas the towed video imagery provided ‘ground truthing’ for the multibeam and 

allowed for fine scale habitat definition. The hydroacoustic maps and observations recorded 

from towed videos were combined in a statistical modelling framework using Classification 

and Regression Trees to predict the probabilities of occurrence of substrate and biota in areas 

with no observations (see Radford et al. 2008 for detailed methods). For both sites, all 

identified benthic classes were mapped, including sediment texture and relief, reef structures, 

different types of vegetation and sessile invertebrates, providing a total of 21 variables 

(Table 3.2). All probabilities of occurrence for benthic habitat and biota from the modelling 

were then predicted on a 2.5 m grid in ArcGIS using GDA94 datum MGA zone 50 equal 

area projections, allowing future querying and intersecting with the fish sampling data.  

3.3.4 Preliminary data exploration  

In order to achieve a continuous distribution of the response variable ‘Fish Length’ for each 

species, fork length measurements from both sites were analysed together. All exploratory 

and statistical analyses were performed using the packages lattice, mgcv, gamclass and raster 

in R software (version 3.2.0; R Core Team 2014). The initial data exploration followed 

procedures outlined in Zuur et al. (2007, 2010), examining potential outliers, homogeneity 

and co-linearity of covariates for individual fish species sequentially. For each species-

specific data subset, the explanatory variables with Spearman’s rank correlation > 0.7 to one-

another and/or explanatory variables with a high percentage of zeroes (> 90 %), were 

excluded from further analyses of the specific subset (Moore et al., 2011). 
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3.3.5 Model fitting, cross-validation and final variable 

selection 

The final subset of environmental variables was fit into a GAM for each species with a 

gamma error distribution with log link function (Hastie & Tibshirani, 1990; Wood, 2006). 

The predicted habitat data has probabilities of occurrence ranging from 0 to 1, as such, all 

explanatory variables were modelled with smoothers (knots) limited to k = 3. The number of 

knots determines the smoothness of the curve; the fewer knots used, the more smooth the 

curve (Wood, 2006; Sagarese et al., 2014). In addition, each model formula included a 

‘gamma = 1.4 loading to place a heavier penalty on each effective degree of freedom to 

counteract overfitting without compromising the model fit (Zuur et al., 2009; Drexler & 

Ainsworth, 2013). 

The smoothing was performed automatically with cubic regression splines and a 

combination of shrinkage and double penalty approaches during the model fitting process 

(Marra & Wood, 2011). Shrinkage procedures are continuous processes, carrying out 

variable selection in one single step in such a way that smooth terms making no contribution 

to the model can be penalized away completely, and are considered to be a valid method for 

a variable selection in terms of both stability and prediction (Wood, 2006; Hesterberg et al., 

2008). Hypothesis testing was used for final variable selection. Where the hypothesis testing 

indicated non influential variables (approximate P > 0.05) they were removed from the 

analysis and the model was re-fitted (Marra & Wood, 2011). When smoothers exhibit a 

linear behaviour, terms for these variables were fitted in a parametric manner. Response 

curves were visually inspected for ecological realism (Sagarese et al., 2014). Finally, we 

repeated 5-fold cross validation 50 times and then calculated normalized root mean square 

error (normalized RMSE) to examine the average magnitude of the predictive errors of all 

generated submodels (Potts & Elith, 2006; Costa et al., 2014).  

To verify an absence of residual patterns, model residuals were plotted against each predictor 

variable included in the final model and excluded during variable selection procedures. 

Spatial independence was evaluated by plotting the model residuals against the spatial 

coordinates. Possible influential observations, outliers, homogeneity and normality of model 

residuals were investigated graphically following Zuur et al. (2010). 
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Table 3.1 The list of study species, with sample size and sample length range provided. 

Scientific 

name 

Common 

name 

Family Number of 

individuals 

Size range 

sampled 

(mm) 

Max. size 

recorded 

(mm) 

Size at maturity 

(mm) 

Fisheries Selection basis 

Lethrinus 

genivittatus 

Longspine 

emperor 
Lethrinidae 118 98-242 250 

~ 105 

(Mellin et al., 2007) 

Recreational & 

Minor 

commercial 

Key indicator species (Galaiduk, 

R., unpublished data), vulnerable 

to trawl gear (Kangas et al., 

2007) 

Coris 

auricularis 

Western 

king wrasse 
Labridae 327 45-298 400 

~ 200 

(Lek et al., 2012) 

Casual 

recreational 

Key indicator species (Galaiduk, 

R., unpublished data), limited 

range endemic (south-western 

Australia only) 

Parupeneus 

chrysopleuron 

Rosy 

goatfish 
Mullidae 146 64-235 330 NA 

Commercial & 

Recreational 

Key indicator species (Galaiduk, 

R., unpublished data), 

commercially and recreationally 

fished , biology unknown  

Torquigener 

vicinus 

Orange 

spotted 

puffer 

Tetraodontidae 86 43-193 220 NA Not fished 

Key indicator species (Galaiduk, 

R., unpublished data), non- 

commercial, biology unknown  

Chrysophrys 

auratus 
Pink snapper Sparidae 65 145-809 940 

~ 600 

(Smallwood et al., 

2013) 

Major 

Commercial & 

Recreational 

Key indicator species (Galaiduk, 

R., unpublished data), fisheries 

indicator (Kangas et al., 2007) 

Pentapodus 

vitta 

Western 

butterfish 
Nemipteridae 667 57-294 310 

~ 150 

(Mant et al., 2006) 
Recreational 

Key indicator species (Galaiduk, 

R., unpublished data), vulnerable 

to trawl gear (Kangas et al., 

2007) 
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3.3.6 Spatial prediction of species’ size distributions 

Once the final models were validated, the constrained size distributions of individual fish 

species were predicted on 2.5 m grids using R and these predictions were plotted in ArcMap 

10.2. In addition, to identify ‘hotspots’ for multiple species, the continuous predictive rasters 

were reclassified into 2 size categories: juveniles/small size individuals and adults/large size 

individuals according to the known ontogeny of individual species. For Lethrinus 

genivittatus, Chrysophrys auratus and Pentapodus vitta the reclassification was based on an 

individual’s length at maturity (Table 3.1). The ontogenetic shift for Coris auricularis is 

known to occur at approximately 200 mm total body length when juvenile females change 

sex (Lek et al., 2012), which provided the basis for raster reclassification in this study. When 

biological data on size distributions were not available from the literature (Parupeneus 

chrysopleuron, Torquigener vicinus), the size categories were assigned arbitrarily based on 

the observed size frequency distributions. For example, individuals with body length 

belonging to a first quartile were assigned into the juvenile/small size category, whereas 

individuals with body length belonging to a fourth quartile were assigned into adult/large 

category. The reclassified values were plotted again to illustrate potential multi-species 

‘hotspot’ areas, where environmental niche conditions were suitable for juvenile/small or 

adult/large individuals of the modelled species. For example, a hotspot would have a 

maximum score of 6, corresponding to the six modelled fish species that could potentially 

associate with that particular area.  

To guide the interpretation of the hotspot maps we also visually represented the relationship 

between the predicted hotspots and the recorded abundance of adult and juvenile fishes by 

overlaying them on the hotspot map. Based upon the same size categories as were used for 

reclassification of the predicted hotspot map, the observed abundance values for adults and 

juveniles of each species in each sample were standardized by expressing as a proportion of 

the total number of juveniles or adults recorded for that species. The values for each of the 

six species were then summed for each sample location and plotted on the hotspot map. We 

used Spearman’s rank correlation (ρ) to assess the measure of association between the 

predicted hotspots and the recorded standardized abundances of adult and juvenile fishes. 

3.4 Results 

3.4.1 Species specific models and variable selection 

Significant linear and nonlinear relationships for individual length distributions were 

observed for all six study species.  



 

39 

Table 3.2 Summary of the environmental predictors extracted from the hydroacoustic survey 

and the predictive modelling used for the generalized additive model fits. 

 
^ Local neighbourhood analysis:  run on circles of kernel pixel radius 5, 10, 25 original cell 

size is 2.5 m.  

Predictor  Description & units Predictor 

Code 

Bathymetry Elevation relative to the Australian Height Datum (m) bathy 

Eastness Trigonometric transformation of a circular azimuthal direction of 

the steepest slope (sin(aspect)), calculated on a 3 x 3 pixel area. 

Values close to 1 represent east-facing slope, close to -1 if the 

aspect is westward 

eastness 

Northness Trigonometric transformation of a circular azimuthal direction of 

the steepest slope (cos(aspect)), calculated on a 3 x 3 pixel area. 

Values close to 1 represent north-facing slope, close to -1 if the 

aspect is southward 

northness 

Slope First derivative of elevation. Average change in elevation, 

calculated on a 3 x 3 pixel area (steepness of the terrain, % rise) 

slope 

Range 5,10,25^ Maximum minus the minimum elevation in the local 

neighbourhood (local relief) of 5,10,25 m kernel radius 

rng5, rng10, 

rng25 

Plan curvature Secondary derivative of elevation. Measure of concave/convexity 

perpendicular to the slope, calculated on a 3 x 3 pixel area 

plan 

Profile curvature Secondary derivative of elevation. Measure of concave/convexity 

parallel to the slope, calculated on a 3 x 3 pixel area 

prof 

Curvature Combined index of profile and plan curvature curv 

Trend The linear trend calculated across the bathymetry dataset trend 

Low profile reef Relief less than 1 m. Probability of occurrence: 0-1 LPR 

Medium profile 

reef 

Relief between 2 and 4 m.  Probability of occurrence: 0-1 MPR 

High profile reef Relief greater than 4 m.  Probability of occurrence: 0-1 HPR 

Reef Undifferentiated. Probability of occurrence: 0-1 reef 

Sand Undifferentiated. Probability of occurrence: 0-1 sand 

Hard coral Undifferentiated. Probability of occurrence: 0-1 hardcoral 

Kelp  Ecklonia radiata.  Probability of occurrence: 0-1 kelp 

Seagrass Undifferentiated.  Probability of occurrence: 0-1 seagrass 

Vegetation Undifferentiated. Probability of occurrence: 0-1 veget 

Sessile 

invertebrates  

Undifferentiated. Probability of occurrence: 0-1 sessinvert 
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The majority of the significant explanatory variables in the final models were associated with 

the physical descriptors of habitat complexity (i.e. local relief and/or slope) with some 

significant biotic variables (i.e. probability of occurrence of mixed undifferentiated 

vegetation, sessile invertebrates and reef; Table 3.3). The deviance explained by the final 

models ranged from 13.6 to 54.6 % (Table 3.3). The initial set of 21 explanatory variables 

was typically reduced to between two and five significant variables. The residual plots 

confirmed homogeneity, normality and independence for all six focal species. For only one 

species, Chrysophrys auratus, slight spatial clustering of positive residuals indicated that the 

GAM model over-predicted the length distributions for this species. This can be attributed to 

the relatively small sample size (65 observations) and the large range in the observed sizes 

(145 – 809 mm) for this species. The average difference between the predicted and observed 

size values (normalized RMSE) for all models varied between 13.5 – 23.1 % (Table 3.3). 

Higher error values were associated with lower explained deviance, suggesting poor model 

fits for Torquigener vicinus and Coris auricularis. 

The presence of reef and vegetation and the habitat structural complexity (‘reef’, ‘veget’ and 

‘rng25’ respectively) were the most common variables chosen by the fitted models across all 

modelled species (Table 3.3). The large individuals of Lethrinus genivittatus and C. auratus 

were predicted to be positively associated with the presence of reef and vegetation and high 

structural complexity (Figure 3.2). In addition, high structural complexity and presence of 

vegetation were positively associated with large individuals of Pentapodus vitta and 

presence of reef was positively associated with large individuals of T. vicinus (Figure 3.2). In 

contrast, small individuals of C. auricularis were predicted to be associated with presence of 

reef and vegetation and small individuals of Parupeneus chrysopleuron were predicted to be 

associated with high structural complexity of habitat. Large individuals of both species were 

associated with open areas of low structural complexity (Figure 3.2). Bathymetry was an 

additional environmental variable that appeared in models for three species. The smaller 

individuals of P. vitta, C. auratus and P. chrysopleuron were predicted to be associated 

primarily with shallow water (Table 3.3 and Figure 3.2). 

3.4.2 Spatial predictions 

While a degree of mixing between large and small size individuals was apparent for all six 

species, the spatial predictions of the habitat associations from the GAM models consistently 

showed spatial separation between large and small size individuals (Figure 3.3). The small 

size individuals of L. genivittatus were predicted to be found in the structurally complex near 

reef areas throughout most of study Area 1 and were particularly concentrated in the north-

east and the south-east corners of Area 1 and in the western part of study Area 2 (Figure 
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3.3a, b). Large individuals of this species were mostly predicted to be associated with 

exposed near reef areas covered with vegetation in the central and south-west parts of Area 1 

and throughout most of Area 2 (Figure 3.3a, b).  

Small size C. auricularis were predicted at near reef areas with a low cover of sessile 

invertebrates and a high probability of vegetative cover in the north-western, southern and 

the central part of Area 1 and also in the central part of Area 2.  

 

Figure 3.2 Smoother estimates (solid line) for the environmental predictors as obtained by generalized 

additive models for individuals of various body lengths of the six study fish species. The approximate 

95% confidence envelopes are indicated (grey shading), marks along the x-axis are sampled data 

points. All explanatory variables were fitted with model smooths (knots) k = 3. Summary of the 

environmental predictors is provided in the Table 3.2.  
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Table 3.3 Variable selection for species-specific generalized additive model with percent deviance explained (Dev) and the normalized root mean square error (normalized 

RMSE) provided. Initial models are in italics. Final models are in bold. All explanatory variables were fitted with smooths (knots) k=3. When the smoothing symbol (‘s’) 

does not appear in the final model, that term was fit as parametric function.  Summary of the environmental predictors is provided in the Table 3.2. 

Species Variable selection procedure Dev (%) 
Normalized 

RMSE (%) 

Lethrinus 
genivittatus 

Length~ s(eastness)+s(northness)+s(curvature)+s(reef)+s(rng25)+s(slope) 

+s(vegetation)+s(sessinvert)+s(sand)+s(seagrass) 

Length~ curvature+slope+s(rng25)+s(reef)+s(vegetation) 

 

54.6 

 

19.3 

Coris auricularis 

 

Length~  s(eastness)+s(northness)+s(profile)+s(slope)+s(reef)+s(rng25) 

+s(sessinvert)+s(vegetation)+s(seagrass) 

Length~ vegetation+profile+s(reef)+s(sessinvert)+s(slope) 

 

15.8 

 

20.4 

Parupeneus 

chrysopleuron 

Length~  s(eastness)+s(northness)+s(curvature)+s(reef)+s(rng25)+s(slope) 

+s(bathymetry)+s(vegetation)+s(sessinvert)+s(seagrass) 

Length~ s(bathymetry)+s(rng25) 

 

21.1 

 

18.2 

Torquigener 

vicinus 

Length~  s(eastness)+s(northness)+s(curvature)+s(reef)+s(slope)+s(bathymetry)+s(vegetation)+

s(sessinvert) 

Length~ reef +s(eastness) 

 

13.6 

 

23.1 

Chrysophrys 

auratus 

Length~  s(eastness)+s(northness)+s(profile)+s(bathymetry)+s(reef)+s(rng25) 

+s(kelp)+s(vegetation)+s(sand)+s(seagrass) 

Length~ s(eastness)+s(rng25)+s(bathymetry)+s(reef)+s(vegetation) 

 

53.2 

 

18.9 

Pentapodus vitta Length~  s(eastness)+s(northness)+s(profile)+s(bathymetry)+s(reef)+s(rng25) 

+s(slope)+s(vegetation)+s(sessinvert) 

Length~ s(eastness)+s(northness)+s(rng25)+s(bathymetry)+s(vegetation) 

 

20.8 

 

13.5 
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In contrast, the larger individuals of this species were predicted to be associated with areas of 

low vegetative cover and medium reef complexity throughout Area 2 and north-east and 

south-east parts of Area 1 (Figure 3.3c, d).  

 

Figure 3.3 Predictive maps of habitat associations on a continuous size scale of individuals of the six 

study species as obtained by generalized additive models predicted on a 2.5 m grid. Positions of 

species specific observations from the individual stereo-BRUVs surveys are marked by green circles. 

Water depth was important for P. chrysopleuron with medium to small size individuals of 

this species predicted to be scattered over reef slopes at intermediate water depth in the 
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north-west, south-east and central parts of Area 1 and in the western part of Area 2. The 

larger size individuals of this species were predicted to be found throughout both study areas 

in deep water habitats characterised by low structural complexity (Figure 3.3e, f).  

 

Figure 3.3 continued Predictive maps of habitat associations on a continuous size scale of individuals 

of the six study species as obtained by generalized additive models predicted on a 2.5 m grid. 

Positions of species specific observations from the individual stereo-BRUVs surveys are marked by 

green circles. 

The exposed east facing reef areas throughout the central part of Area 2 and in a few 

distinctive patches in the central and north-western parts of Area 1 were predicted to be 
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suitable for large size individuals of T. vicinus. In contrast, the small size individuals of this 

species were predicted to be found throughout most of Area 1 and on protected flat patches 

in the west and east parts of Area 2 (Figure 3.3g, h).  

The larger sized individuals of C. auratus were predicted to be associated with west facing 

deep reef slopes covered by dense vegetation throughout most of Area 2 and the northern 

and western parts of Area 1. In contrast, smaller sized individuals of this species were 

predicted to be scattered throughout shallow, bare, east facing reef flats in the central part of 

Area 2 and in the central-south part of Area 1 (Figure 3.3i, j). 

Both study areas were predicted to be highly suitable for small to medium size individuals of 

P. vitta. Protected reef flats at intermediate depths in the north-west, central and south of 

Area 1 and the western and eastern sides of Area 2 were predicted to be particularly suitable 

for small size individuals of this species. The large size individuals of this species were 

mostly predicted to be associated with deep high complexity reef slopes covered by 

vegetation throughout the central and eastern parts of Area 2 (Figure 3.3k, l). 

Cumulative predicted fish distribution maps of the six study species combined identified 

hotspots of environmental niche conditions suitable for species aggregations of juvenile fish 

and adult fish in the study region. The spatial distribution of hotspots for adults and juveniles 

showed opposing patterns (Figure 3.4). Environmental niche conditions suitable for juvenile 

fish were predicted in the south-eastern part of Area 1 and in the many shallow pockets 

scattered throughout the area. In Area 2 conditions suitable for juveniles were predicted 

around the shallow reef edges in the western part of the study area (Figure 3.4a, b). In 

contrast, hotspots for species aggregations of adult fish were predicted in deeper, less 

structurally complex regions around the centre and north of study Area 1. In Area 2 

environmental niche conditions suitable for adult fish were predicted in the eastern and the 

western regions of the area (Figure 3.4c, d). These patterns are supported by the observed 

standardized abundances of juveniles (Spearman’s ρ = 0.23, P = 0.005) and adult fishes 

(Spearman’s ρ = 0.17, P = 0.03), where areas of high recorded abundance are close to or 

within areas that were predicted as hotspots (Figure 3.4).  

3.5 Discussion 

3.5.1 Methodological approach  

This case study successfully combined highly precise continuous fish length data obtained 

using stereo-BRUVs with modelled habitat maps derived from ground-truthed data to 
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produce predictive maps of ontogenetic environmental niche associations of six abundant 

fish species with varying degrees of ecological and commercial importance. When examined 

next to each other these maps highlight habitat partitioning with body length for all study 

species. These maps graphically represent ontogenetic shifts in habitat use. Changes in 

habitat requirements with ontogeny, and patterns of population connectivity across a 

continuous mosaic of habitats is an often overlooked topic in spatial modelling of demersal 

fishes (Compton et al., 2012; Nagelkerken et al., 2015). However, it is a crucial link for 

understanding the processes that underpin abundance patterns and community composition 

across a mosaic of benthic habitats. For any given species, as an individual grows its 

morphology and behaviour change, as does its prey size and type (Lukoschek & McCormick, 

2001; Kimirei et al., 2013). This often requires a change in habitat to meet energy and 

resource needs (Huijbers et al., 2015). As such, ontogenetic movement among habitat types 

is dependent on size of individuals and the relative complexity of structure for protection 

and/or availability of prey, which is also likely to be size structured. A failure to move 

between habitats is likely to adversely impact survivorship. Increasing the understanding of 

size-specific environmental niche partitioning among conspecifics and mapping the key 

areas of the seascape that are important for multiple species can inform management efforts 

directed towards specific or vulnerable life history stages of fish. 

3.5.2 Habitat distribution of studied species 

Fitting GAMs is a flexible modelling approach suitable for demersal fishes (Valavanis et al., 

2008). The individual models fitted varied in their explanatory and predictive performance. 

The lowest deviance explained and the highest predictive errors were observed for models of 

size distributions fitted to C. auricularis and T. vicinus. The most plausible explanation for 

this poor model performance is related to the biological characteristics of these species, 

where mixed schools contain both juveniles and adults. This has been documented for 

C. auricularis, where various size females of this species come together under male-

dominated harems or set up cleaning stations to remove skin parasites from other fish (Lek et 

al., 2012; Saunders et al., 2013).  

High structural complexity provided by the reefs and canopy forming seaweeds were found 

to be among the most common environmental variables that drove the patterns in size 

distributions of the modelled species. These habitats are known to drive the distribution of 

fish species due to their influence on many demographic and community processes, for 

example by providing different sized shelters (Wilson et al., 2007; Nash et al., 2013), food 

sources (Lim et al., 2016), and nesting spaces (Azevedo et al., 1999) to individuals with 

varying degrees of habitat specialization (Munday, 2004).  
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Figure 3.4 Hotspots map for 

cumulative environmental niche 

suitability for juvenile/small (a, b) 

and adult/large (c, d) size individuals 

of the six study species. Fish size 

classes for the rasters and the 

standardized abundance were 

assigned based on known ontogeny of 

the study species. There is apparent 

habitat partitioning between fishes of 

different life history stages/body 

lengths, suggesting ontogenetic shifts 

in habitat use for all six species. 
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These processes could explain the close associations of large individuals of four of the 

modelled species with deep reef habitats. Juvenile survivorship on deep reefs is typically 

lower than in shallow near shore areas due higher predation rates (Kimirei et al., 2013), a 

situation which is likely to favour higher abundance of larger individuals. In contrast, small 

individuals of C. auricularis and P. chrysopleuron were predicted to be associated with reefs 

and macroalgal habitats. Reef and macroalgal habitats support high density and diversity of 

fish assemblages (Bellwood et al., 2003; Mellin et al., 2007), are important recruitment areas 

(Jones, 1984b) or juvenile habitats (Evans et al., 2014; Grol et al., 2014) and contribute to 

adult population patterns (Huijbers et al., 2013). 

3.5.3 Applicability of findings to spatial management 

Understanding spatial population dynamics of marine animals is a vital step for successful 

marine spatial management. With fish populations being often patchily distributed in space 

and time (e.g. Newman & Williams 2001; Travers et al. 2012) and observation data being 

often limited by resources available for monitoring and/or to a few sampling locations, the 

use of predictive spatial modelling is a powerful tool for management. Mapping key areas 

such as fish nurseries or hotspots for multiple species aggregations can identify 

environmental niche requirements and resource partitioning between fish at different life 

stages. The geographic distribution and productivity of nursery areas are important drivers 

for the spatial distribution patterns of adult populations, with areas close to nurseries 

replenish more isolated areas (Huijbers et al., 2013). In addition, well-established global 

biodiversity patterns are changing rapidly in response to human activities such as ocean 

warming (Sala & Knowlton, 2006). To effectively address such issues, managers require 

advanced tools to identify geographic areas that have a high intrinsic management value. Our 

method for identifying hotspot areas demonstrates a useful decision support tool for spatially 

identifying benthic areas that are important for numerous species and/or for different life 

stages of multiple species (e.g. fish nurseries). Following in situ evaluation of the predicted 

hotspots, the hotspot maps can identify entire areas that may not require future in-depth 

surveys, thus optimizing limited management resources. Hotspot areas identified through 

quantitative analysis could be considered in zoning schemes and become priority areas for 

marine spatial monitoring and management (Schmiing et al., 2013). In addition, future re-

zoning efforts should consider including hotspot areas. In conclusion, robust size-based 

predictive ecological modelling can further improve our knowledge of the spatial habitat use 

of demersal fishes at various life history stages. In turn this knowledge will contribute to 

marine spatial management efforts for rapid assessment and development of mitigation 

strategies for declining ecosystem condition.  
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Postscript: In the next two chapters I use a different spatial database which has no 

habitat maps constructed yet. Therefore, I use variables of habitat complexity as surrogates 

for various habitat types and for modelling the species-environment relationships. In the next 

chapter, I utilise the individual fish biomass to further extend the modelling approach 

developed in the previous chapter. I compare and contrast models developed for the 

individual fish biomass with models developed for relative abundance of the same species. 
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Chapter 4 The use of individual fish 

biomass models to map essential habitat for 

adult and juvenile targeted fishes 

4.1 Abstract 

Habitat resource partitioning and patterns of connectivity between different habitats by 

conspecific fishes of different life-history stages is a significant knowledge gap. We suggest 

that essential habitats of different life stages of fishes of the same species should be 

incorporated into spatial plans for fisheries and biodiversity conservation management. 

Species distribution models were used to examine patterns in the abundance and 

environmental niche requirements of different life stages of three iconic West Australian 

fishes. Generalised Additive Models on abundance and biomass data indicated that the 

bathymetry, the structural complexity of habitat and the direction of reef slope were the most 

common predictors for the observed patterns of distribution of Glaucosoma hebraicum, 

Choerodon rubescens and Chrysophrys auratus. The biomass models had higher explanatory 

power (adjusted R
2
) than the abundance models for all three study species. The relative 

importance of all explanatory variables varied between species for abundance and biomass 

models suggesting that processes driving the abundance patterns could be different from the 

body length associated demographic processes throughout an individual’s life cycle. 

Continuous predictive maps of biomass distributions identified shallow near shore areas as 

potential nursery habitat (lower biomass of individual fish) for two species and predicted 

large, sexually mature adults of the third species would be associated with these areas. 

Spatial distribution models developed from biomass data for individual fish are a useful 

decision support tool for identifying benthic areas that are important for different species 

and/or life stages of multiple species (e.g. fish nurseries or spawning stock hotspots). 

4.2 Introduction 

The goals of marine spatial management are usually the preservation of biodiversity and 

management of sustainable fisheries (Olds et al., 2014). These goals are often constrained by 

economic considerations, which raise the questions about where scarce conservation and 

fisheries management resources should be directed and what areas are most worthy of 

protection (Ferrier, 2002). Similarly, the decision about where to locate marine reserves and 

closed areas to maximise biodiversity conservation and sustainable fisheries management 
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outcomes is challenging, as designated areas may not encompass the essential habitat 

requirements of different life stages of a range of targeted and ecologically important fishes 

(Schmiing et al., 2013). Identifying key areas of the seascape that are crucial for multiple 

species, or for different life-history stages of same species (i.e. spawning grounds, fisheries 

refugia or nursery areas) can help to optimise the design and placement of reserves (e.g. 

Possingham et al. 2000) and may help to preserve critical spawning stock biomass of 

exploited species and result in lower losses and higher survival of vulnerable life stages 

(Dugan & Davis, 1993). Furthermore, preserving functional seascape connectivity patterns 

between nursery areas and adult populations can enhance the abundance of target species as 

well as other fish species relying on healthy ecosystem functioning (Olds et al., 2014). 

In the marine environment, describing patterns of species-habitat associations has been the 

focus of many ecological and fisheries associated studies (Curley et al., 2002; Lenanton et 

al., 2009; Lewis et al., 2012; Galaiduk et al., 2013). The amount, type and quality of habitat 

is known to influence the abundance, density and distribution patterns of many marine fishes 

(Gillanders & Kingsford, 1998). Consequently, the identification of essential fish habitat has 

become a key goal for marine spatial management (Compton et al., 2012). Species 

distribution models (SDMs) are a robust method for the rapid assessment of species-habitat 

associations at broad geographical scales (Guisan & Zimmermann, 2000; Pittman et al., 

2007). In the recent years, SDMs have become a common tool for investigating patterns in 

fish occurrence, abundance and density in relation to benthic marine habitats (Moore et al., 

2009; Monk et al., 2011; Harvey et al., 2013; Young & Carr, 2015). The results of predictive 

ecological modelling have helped to map and identify areas for spatial protection and to 

develop zoning and management plans for marine environments (Possingham et al., 2000; 

Pittman et al., 2007). 

It is common for SDMs to use occurrence datasets to examine processes that produce the 

observed species and assemblage patterns (Brotons et al., 2004; Francis et al., 2005). 

However, as mechanisms that determine presence can be different to those that determine 

abundance (Ridout et al., 1998), examining other demographic processes such as species 

abundance, density or biomass estimates can enhance the potential benefits of using SDMs 

for spatial management applications. More specifically, since many demersal fish species 

undergo ontogenetic habitat associations as they grow (Jones, 1984a; Compton et al., 2012), 

incorporating the continuous body-length or biomass measurements of individual fish could 

help to characterise the relationships between different life-history stages of individual 

conspecific fishes and the environment. The biomass of fish is often used in fisheries 

management, where major reproductive capacity could be invested in relatively few, old, 
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large-size individuals that could produce exponentially more eggs than smaller size 

conspecifics (Larkin, 1978; Bohnsack, 1990). The use of individual fish biomass in the 

SDMs could improve their relevance to applied ecological studies, our understanding of the 

habitat associations of the modelled species, and conservation efforts associated with 

management of the vulnerable life-history stages (e.g. juvenile fish, spawning stock) of fish. 

In this study, we use a species distribution modelling approach to investigate the 

relationships of individual fish biomass estimates and benthic habitat structure at spatial 

scales relevant to informing marine spatial management. The specific aims of this study 

were:  

1) To develop models of fish biomass-benthic habitat relationships for three iconic fish 

species (Glaucosoma hebraicum, Choerodon rubescens and Chrysophrys auratus) in 

Geographe Bay, Western Australia;  

2) To compare and contrast the performance of fish biomass models with models of fish 

abundance;  

3) To generate reliable spatial extrapolations of species biomass across the seascape;  

4) To create a single GIS layer to identify key areas for multiple species (i.e. nursery areas or 

spawning stock biomass hotspot), which can be informative for marine spatial management 

and planning.  

4.3 Methods 

4.3.1 Study area 

Geographe Bay is a ~100 km wide, relatively shallow, north-facing embayment with 

seagrass cover that can at times exceed 60% (McMahon et al., 1997). The bay is located in 

south-western Australia, approximately 220 km south of Perth (Figure 4.1). It is part of 

Ngari Capes Marine Park with approx. 3500 ha (< 4 % total bay area) zoned as no take 

marine sanctuary (Department of Environment and Conservation, 2013). The majority of the 

seafloor is covered by unconsolidated sediments that have been deposited over older clay 

layers. There is also a series of discontinuous limestone ridges, dominated by canopy-

forming brown macroalgae, that run parallel to the coast (Wernberg et al., 2003; Van Niel et 

al., 2009). 
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4.3.2 Fish abundance and biomass data 

We collected data on the patterns of abundance and biomass of three iconic West Australian 

fishes: West Australian dhufish (Glaucosoma hebraicum), Baldchin groper (Choerodon 

rubescens) and Australasian snapper (Chrysophrys auratus). These are indicator species for 

fisheries management in Western Australia and account for the majority of the total 

nearshore and estuarine catch by commercial and recreational fishers (Smallwood et al., 

2013; Johnston et al., 2014). Stock assessments classify these species as being overfished 

along the central west coast region of Western Australia (Wise et al., 2009; WA Department 

of Fisheries, 2013) despite the implementation of common fisheries management strategies, 

such as bag and size limits licensing and quotas. 

 

Figure 4.1 Bathymetry of Geographe Bay with grey dots indicating the stereo-video deployment sites. 

Inset: The location of the Geographe Bay study area on the south-west coast of Western Australia. 

The abundance and biomass of these three target fish species was surveyed between the 9 

and 17 December 2014 using baited remote underwater stereo-video systems (hereafter 

stereo-BRUVs). This method of data collection is thought be optimal for sampling large, 

mobile, carnivorous fish that are low in abundance (Cappo et al., 2004; Lewis et al., 2012). 

Each stereo-BRUV system comprised two wide-angle Sony CX12 high-definition video 

cameras that had been baited with approximately 1000 g of crushed pilchards (Sardinops 

sagax), and lowered to the bottom for a 60 minute soak time. The 217 video recordings from 

these deployments were analysed using the software EventMeasure (SeaGIS Pty Ltd). For 
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sample unit standardisation purposes and to ensure high measurement accuracy and precision 

we only included fish within 7 m in front and 3 m into the water column above the system. 

Additional information on design, calibration (Harvey & Shortis, 1995; Shortis et al., 2009) 

and use of the stereo-BRUVs is presented in detail in the literature (e.g. Cappo et al. 2003; 

Langlois et al. 2012 and references therein). To ensure that sampling replication was 

appropriate, random stereo-BRUVs deployments were spatially stratified according to the 

size of the study area, habitat availability and depth. In addition, distance controls were used 

in the planning stage to avoid bait plume overlap and reduce the likelihood of fish moving 

between stereo-BRUVs, with each pair of stereo systems at least 400 m apart from each 

other on the day of deployment. The relative abundance of study species was estimated using 

MaxN (Cappo et al., 2007; Harvey et al., 2007, 2012). This measure is considered to be 

conservative for estimating fish abundance and avoiding repetitive counts of individual fish 

in 1 hour long recordings (Cappo et al., 2003). The fork length of individuals at the MaxN of 

each species was measured for each stereo-BRUVs deployment with the EventMeasure 

software (www.seagis.com.au) with precision constraints set to a 10 % cut off, which is 

achievable using stereo-BRUVs (Harvey & Shortis, 1995; Harvey et al., 2002). The biomass 

estimates for individual fish observed in the video recordings were obtained with known 

length-weight relationships (Smallwood et al. 2013 and references therein). For Glaucosoma 

hebraicum, the length-weight relationships are different for males and females. We were 

unable to sex the individual fish in the video recordings, therefore the biomass estimates 

were averaged for male and female individuals of this species. 

4.3.3 Environmental variables 

The bathymetric data was extracted from a mosaic of LiDAR and multibeam surveys 

collected by Fugro Corporation Pty Ltd gridded to a cell size of 4*4 m. The LiDAR 

hydrographic survey was performed between April and May 2009 on behalf of the 

Department of Planning as a part of a national coastal vulnerability assessment. The LiDAR 

area extended seaward from the coastal waterline to the 20 m marine nautical navigation 

chart contour and constituted the majority of bathymetric data (for details on LiDAR 

collection and processing see www.planning.wa.gov.au, accessed May 2016). In addition to 

the LiDAR, a small area of deeper water was surveyed during March-April 2006 using 

Reson 8101 multibeam in the north-west part of the study area as part of the Marine Futures 

biodiversity surveys (see Radford et al. 2008 and matrix-prod.its.uwa.edu.au/marinefutures; 

accessed May 2016 for further details). In addition to the bathymetric data, we derived five 

additional environmental variables that describe the structure and complexity of the seafloor 

http://www.marinefutures.fnas.uwa.edu.au/__data/assets/pdf_file/0008/624626/MF_Site_Selection_Wsh_Report_final.pdf
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and were previously shown to influence the distribution of fish using the Spatial Analyst 

toolkit in ArcGIS 10.2.2 (Moore et al. 2009; Monk et al. 2011; Table 4.1).  

Table 4.1 Description of the seafloor variables used in model building. 

 

4.3.4 Species distribution modelling 

To infer the effect of habitat complexity on the abundance or biomass of three fish taxa we 

applied generalised additive models (GAMs) developed for individual study species and the 

full subsets approach (Zuur et al., 2009). GAMs are the most common and well developed 

method for modelling fish-habitat relationships (Pittman et al., 2007; Valavanis et al., 2008; 

Schmiing et al., 2013) and the full subsets method provides an unconstrained approach for 

fitting ecological responses to the predictor variable (Zuur et al., 2009; Fulton et al., 2014). 

The initial data exploration followed procedures outlined in Zuur et al. (2007, 2010), 

examining potential outliers, homogeneity and co-linearity of covariates for subsets of data 

for individual fish species. There were large slope values observed in the exploratory stage. 

However, we decide to keep these potential outliers, as they represent true nature of the 

benthos of the bay which is mainly characterised by low relief seascape with occasional reef 

ridges. 

The GAMs for abundance estimates, which were characterised by large proportion of zeroes, 

were fitted with negative binomial error distribution and logarithmic link function. The 

decision to use the negative binomial error distribution was made after comparing the 

Environmental 

Predictor  

Description 

Bathymetry Elevation in metres relative to the Australian Height Datum. 

Eastness Trigonometric transformation of a circular azimuthal direction of the slope 

(sin(aspect)). Values close to 1 represent east-facing slope, close to -1 if the 

aspect is westward. 

Northness Trigonometric transformation of a circular azimuthal direction of the slope 

(cos(aspect)). Values close to 1 represent north-facing slope, close to -1 if 

the aspect is southward. 

Slope First derivative of elevation. Average change in elevation, steepness of the 

terrain, % rise. 

Range 10 Maximum minus the minimum elevation in the local neighbourhood (coarse 

scale local relief). Calculated at window size of 10*10 cells, which equates 

to ground area of 1600 m2. 

Curvature Combined index of profile (parallel to the slope) and plan (perpendicular to 

the slope) curvature relative to the analysis window. 
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observed frequency distribution of abundance values to theoretical density curves from a 

negative binomial and a Poisson distributions (which are most common types of statistical 

distributions for analysing count data; Zeileis et al. 2007) for similar mean and dispersion 

parameters (Tu, 2006; Zuur et al., 2009). The frequency distribution for the observed 

abundance values for all focal species best resembled the distribution of theoretical values 

from the negative binomial density curves. The biomass GAMs were fitted with gamma 

error distribution and logarithmic link function, which is a suitable statistical distribution for 

analysis of a continuous positive response variable (Murase et al., 2009; Zuur et al., 2009). 

Due to the number of degrees of freedom available for model fitting, the maximum number 

of explanatory variables across all fitted models was limited to four, which increases the 

ability to make ecological interpretation of the observed patterns in the numeric data.  In 

addition, in order to produce conservative models (Wood, 2006), the maximum number of 

knots was also restricted to k = 4. To minimise the probability of model overfitting, model 

fits for all possible combinations of variables were compared using the Akaike Information 

Criterion corrected (AICc), which is a recommended criterion for finite sample size 

(Burnham & Anderson, 2003). In addition, to rank the fitted models we computed the 

Akaike weights (Buckland et al., 1997) to examine the weight of likelihood in favour of a 

model being the best in the given set of models. To explore the relative importance of each 

variable, we summed the weighted AICc values across all possible models. When number of 

candidate models tied for best for data analysis (arithmetic difference between a model AICc 

and the minimum AICc for all models, denoted ∆AICc < 2), the model of best fit was 

selected based on having the highest Akaike weight ranking for likelihood of evidence across 

all possible models (sensu Burnham & Anderson 2003). Response curves were visually 

inspected for ecological realism (Sagarese et al., 2014). All models were fitted in R version 

3.2.0 (R Core Team, 2014).  

4.3.5 Model validation  

Models of best fit for biomass and abundance estimates were cross-validated using 5-Fold 

cross validation 50 times (Lehmann et al., 2002). We then calculated normalized root mean 

square error (normalized RMSE) to examine the average magnitude of the predictive errors 

of all generated submodels (Potts & Elith, 2006; Costa et al., 2014). Plots of model residuals 

were visually investigated for patterns following the procedures outlined in Zuur et al. (2009; 

2010). 

To investigate any residual spatial patterns not accounted for with the relationships between 

the observed biomass/abundance and values predicted by the models of best fit, we fitted 
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geographically weighted regression (GWR) and examine the spatial patterns in the 

distribution of the local standardized residuals (Brunsdon et al., 1996). The GWR allows for 

nonstationarity in the relationships between the dependent (observed biomass/abundance) 

and the explanatory (predicted biomass/abundance) variables and is a useful explanatory 

technique for interpretation based on spatial context and known characteristics of the study 

area (Goodchild & Janelle, 2004). 

4.3.6 Spatial prediction of species’ biomass and 

abundance 

Once the best fit models were validated, the constrained biomass and abundance estimates of 

individual fish species were predicted on 4 m grids using R and these predictions were 

plotted in ArcMap 10.2.2. To identify hotspot areas where large fertile adults, or small 

juvenile fish of the three species tended to aggregate, the continuous predictive biomass 

rasters were reclassified into these two categories according to the known biology and the 

life history of individual study species. The cut-off points for the reclassification process 

were based on the fecundity (number of eggs), length and biomass values summarized for 

the three species in Smallwood et al. (2013). The reclassified values were plotted again to 

map the hotspot areas where juvenile or mature adult fish of the modelled species aggregate. 

For example, a hotspot for juvenile/mature fish will have a maximum score of 3, 

corresponding to juvenile/mature individuals of the three modelled fish species that can 

potentially associate with that particular area. In addition, the predictive fish abundance 

rasters were summed for all study species to identify areas of Geographe Bay associated with 

high cumulative abundance of individuals of the modelled species. 

4.4 Results 

4.4.1 Model selection and variable contributions 

Non-linear responses were frequently observed between the biomass or abundance of the 

study species and the explanatory environmental variables (Figure 4.2). These non-linear 

responses provided strong support for using GAMs in studies of the relationships between 

demersal fish and their environment. The relative importance of the explanatory variables 

across all model fits was similar between the biomass and abundance models for 

Glaucosoma hebraicum and Chrysophrys auratus but differed for Choerodon rubescens 

(Figure 4.3).  
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Figure 4.2 Smoother estimates (solid line) for the environmental predictors as obtained by generalised 

additive models for biomass and abundance of the three study fish species. The approximate 95% 

confidence envelopes are indicated (grey shading), marks along the x-axis are sampled data points. All 

explanatory variables were fitted with model smooths (knots) k = 4. Summary of the environmental 

predictors is provided in Table 4.1. 
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The most commonly chosen variables across all models fits for all study species were 

bathymetry, range (indication of structural complexity of the relief) and eastness (azimuthal 

direction of the reef slope) followed by northness and slope (Table 4.2 and Figure 4.3). 

Bathymetry was an important environmental variable for abundance and biomass of all 

modelled species except abundance of C. rubescens where it was assigned low importance 

(Figure 4.3). Best fit models predicted lower biomass and lower abundance in shallow areas 

for C. rubescens, G. hebraicum and C. auratus, with exception of biomass of G. hebraicum 

where higher biomass was predicted in shallow water (Figure 4.2).  

Range was an important variable for the abundance of C. rubescens and G. hebraicum, 

where higher abundance of these species was predicted near reef edges (Figure 4.2). Range 

was also important for biomass of G. hebraicum and C. auratus, where higher biomass of 

these species was predicted for the areas of low complexity (Figure 4.2). These results are 

particularly interesting for of G. hebraicum, which exhibited reversed patterns in the 

abundance and biomass distributions. Similar patterns were observed for eastness variable. A 

higher abundance of C. rubescens and G. hebraicum and a lower biomass of G. hebraicum 

and C. auratus was predicted on the east-facing slopes (Figure 4.2). 

The explanatory power of the best models was notably higher for the biomass models (Table 

4.2). However, the biomass models had slightly higher cross-validation errors (normalized 

RMSE). The best fit model developed for biomass of C. rubescens had the highest 

explanatory power across both the biomass and abundance datasets (adjusted R
2 
= 61 %) and 

intermediate predictive error for the biomass model (normalized RMSE = 23.5 %; adjusted 

R
2 

= 28 %). While the predictive error for model of abundance of this species was highest 

with intermediate explanatory power (normalized RMSE = 20 %; Table 4.2). Despite the fact 

that the best fit models developed for the biomass and abundance of C. auratus had the 

lowest associated predictive errors (normalized RMSE = 19.9 and 11.5 % respectively), the 

explanatory power of these models was lowest across both the biomass and abundance 

datasets (adjusted R
2 

= 33 % and adjusted R
2 

= 6 % respectively; Table 4.2). The amount of 

cross-validation error could be associated with the sample size and the range of sampled 

biomass and abundance values. For example, the observed abundance values of C. rubescens 

and C. auratus ranged between 1-3 and 1-13, resulting in the highest and lowest error terms 

respectively. Similarly, the sample sizes for biomass of C. rubescens and G. hebraicum were 

34 and 35 individuals respectively in the study area, with the range of observed biomass 

values almost twice larger for G. hebraicum, which evidentially resulted in the highest cross-

validation error for the biomass models of this species. Sample size is known to have a major 

impact on model performance (Pearce & Ferrier, 2000).  
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Table 4.2 Summary of candidate models (within 2 ∆AICc from the minimum AICc value) for predicting biomass and abundance distribution of the three study species. 

GAMs of best fit identified by ∆AICc = 0 and highest Akaike weights for evidence support. 

B
IO

M
A

S
S

 

Species Intercept Bathymetry Northness Curvature Range10 Eastness Slope Adjusted 

R
2
 

df AICc ∆AICc Akaike 

weights 

Normalized 

RMSE (%) 

Choerodon 

rubescens 
6.45 + + 

   
+ 0.61 9.48 501.0 0 0.40 23.5 

Choerodon 

rubescens 
6.48 

 
+ 

   
+ 0.48 6.98 501.3 0.29 0.34 

 

Choerodon 

rubescens 
6.47 

 
+ + 

  
+ 0.52 7.95 501.8 0.82 0.26 

 

Glaucosoma 

hebraicum  
6.84 + 

  
+ + 

 
0.45 7.08 552.9 0 0.38 27.9 

Glaucosoma 

hebraicum  
6.82 

  
+ + + + 0.5 8.34 553.6 0.65 0.27 

 

Glaucosoma 

hebraicum  
6.83 + 

  
+ + + 0.48 7.99 554.2 1.28 0.20 

 

Glaucosoma 

hebraicum  
6.84 + 

 
+ + + 

 
0.47 7.95 554.8 1.83 0.15 

 

Chrysophrys 

auratus  
7.14 + 

  
+ + + 0.33 9.36 1788.2 0 0.38 19.9 

Chrysophrys 

auratus  
7.15 + 

  
+ + 

 
0.3 8.28 1789.0 0.79 0.26 

 

Chrysophrys 

auratus  
7.16 

   
+ + 

 
0.29 7.29 1789.6 1.35 0.19 

 

Chrysophrys 

auratus  
7.16 

   
+ + + 0.28 6.78 1789.9 1.69 0.16 
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A
B

U
N

D
A

N
C

E
 

Choerodon 

rubescens 
-1.71 

 
+ 

 
+ + 

 
0.18 8.68 256.0 0 0.51 20 

Choerodon 

rubescens 
-1.74 + +  + +  0.2 11.06 257.2 1.18 0.28  

Choerodon 

rubescens 
-1.70  +  + + + 0.18 9.30 257.8 1.82 0.21  

Glaucosoma 

hebraicum  
-2.38 + +  + +  0.28 11.58 220.8 0 0.34 14 

Glaucosoma 

hebraicum  
-2.28 +   + +  0.26 9.88 221.2 0.42 0.27  

Glaucosoma 

hebraicum  
-2.35 +   + + + 0.27 11.05 221.2 0.45 0.27  

Glaucosoma 

hebraicum  
-2.29 + +  +  + 0.26 10.94 222.8 1.96 0.13  

Chrysophrys 

auratus  
-0.66 + +     0.06 5.29 426.7 0 0.27 11.5 

Chrysophrys 

auratus  
-0.69 + +   +  0.08 6.64 427.1 0.39 0.22  

Chrysophrys 

auratus  
-0.66 +    +  0.07 5.68 427.1 0.39 0.22  

Chrysophrys 

auratus  
-0.60 +      0.04 3.00 427.5 0.76 0.18  

Chrysophrys 

auratus  
-0.69 + +  +   0.08 7.54 428.6 1.83 0.11  
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4.4.2 Model validation 

The visual examination of residuals of models of best fit for abundance of all modelled 

species, identified high frequency of negative residuals, which could be attributed to a large 

amount of zeroes observed in these datasets. In the exploratory stages of our analysis we 

examined the possibility of applying the zero inflated Poisson GAMs to the abundance 

dataset. However, the zero inflated models with Poisson error distribution did not resolve the 

negative skewness in the residuals and produced higher cross-validation errors. At this stage, 

only one package compatible with R statistical software is still under development that will 

allow fitting zero inflated GAMs with negative binomial error distribution that could provide 

a potential solution to the negatively skewed residuals (VGAM; Yee 2015). 

 

Figure 4.3 Relative importance of all environmental variables as indicated by the sum of weighted 

AICc for each variable across all fitted models. 

The spatial patterns in distribution of the local standardized residuals from the GWR analysis 

can be found in plots in Figure 4.4. There was small amount of spatial clustering of high 

residuals in the north-eastern part of the bay in GWR model fit for biomass of Chrysophrys 

auratus. In addition, there was some degree of spatial clustering of the high and low 

residuals in GWR models fitted for abundance of all study species. However, the Moran’s I 
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analysis on the standardised residuals of all GWR models did not indicate spatial correlation 

in model residuals (all Z scores represented the expected outcome and all P > 0.05). Thus we 

conclude that the observed high/low residual patterns are due to local habitat characteristics 

and/or missing covariates, that are known to produce patterns in model residuals 

(Fotheringham et al., 2003; Zuur et al., 2009). 

4.4.3 Spatial predictions 

The predictions from the models of best fit provided a continuous representation of biomass 

and abundance distributions of the study species across entire Geographe Bay (Figure 4.5). 

The small biomass individuals of Choerodon rubescens were predicted to be associated with 

shallow, protected south or east facing reef edges, whereas the large biomass individuals 

were predicted to be found in deeper, flat areas of the bay (Figure 4.5a). The high abundance 

of this species was predicted for exposed reef edges particularly in the western part of the 

bay (Figure 4.5d). 

The large biomass individuals of Glaucosoma hebraicum were predicted to be found in 

shallow, low relief westward sloping areas of the bay. In contrast, small biomass individuals 

of this species were predicted to be associated with deeper protected near reef areas of the 

bay (Figure 4.5b). The high abundance of G. hebraicum was predicted for the north or east 

facing near reef areas at intermediate depths (Figure 4.5e). 

The small biomass individuals of Chrysophrys auratus were predicted to be associated with 

shallow, east facing high relief reef areas of the bay, whereas the large biomass individuals 

of this species were predicted to be found in deep flat areas in the west part of the bay 

(Figure 4.5c). The high abundance of this species was predicted in the deep and exposed 

western part of the bay (Figure 4.5f). 

Cumulative predicted maps of abundance and biomass of small/juvenile and large/mature 

adults of all three study species identified shallow coastal areas of the bay as being a hotspot 

for aggregation of small fish biomass (Figure 4.6b). In addition, small local pockets of 

aggregations of juvenile and adult fish biomass were identified from the cumulative maps 

across the bay. However, no additional distinctive hotspots for the study species could be 

assumed from the cumulative maps of biomass (Figure 4.6a, b). The reef ridge areas that 

spans across most of the bay was predicted to be characterised by high abundance of 

individuals of the study species with higher cumulative predicted abundance in the western 

part of the bay (Figure 4.6c). 
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Figure 4.4 Distribution of the 

local standardised residuals from 

the Geographically Weighted 

Regression analysis. 
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4.5 Discussion 

4.5.1 Most important environmental variables 

Estuaries and shallow, sheltered coastal embayments play a central role in the population 

dynamics of many inshore fish species acting as juvenile nurseries or adult spawning 

grounds (Francis et al., 2005). We found that bathymetry, structural complexity of habitat 

and direction of reef slope were the most common predictors for the observed patterns in 

abundance and biomass distribution of the three study species. Bathymetry and structural 

complexity are also indicative of key processes that relate to resilience in other systems, such 

as regime shifts on coral reefs (Graham et al., 2015) and they should be considered as part of 

selection criteria for spatial planning of marine reserves. However, the relative importance of 

all explanatory variables varied between species for either abundance or biomass models 

suggesting that a different hierarchy of environmental processes dictates patterns in species-

specific abundance and biomass distributions. Small scale habitat characteristics have 

previously been documented to influence the abundance and diversity of reef fishes (Syms & 

Jones, 2004; MacNeil et al., 2009) and to drive species-specific response to the environment 

(Almany, 2004). 

4.5.2 Patterns in abundance of the modelled species 

The abundance of the three study species was predicted to be higher in the western part of 

the bay, identifying these areas as a hotpot for cumulative abundance. In addition, higher 

abundances of West Australian dhufish (Glaucosoma hebraicum) were predicted along the 

limestone reef ridges across the bay. The observed high abundance gradient of the three 

species in the ocean-ward part of the bay could be driven by the large-scale population 

dynamics of these species. The pre-settlers of the three species were recorded to utilise major 

regional oceanic currents such as south-ward flowing Leeuwin Current or north-ward 

flowing Capes Current for enhanced larval transport from the source of populations further 

along the coast (Lenanton et al., 2009; Cure et al., 2015). Therefore, higher abundances of 

the three species could be expected in the areas close to the source of transport, gradually 

declining in the inner part of the bay. Similar patterns were documented in case of the 

Mediterranean wrasse, with a greater abundance of this species observed in the areas that 

were closer to the source of population (Guidetti et al., 2002). High structural complexity 

and higher prey availability on reef habitats could be additional factors that explain high 

abundance of G. hebraicum near the reef ridges. This carnivorous fish is known to favour 

reef habitats at various life-stages (Fairclough, 2005).  
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Figure 4.5 Predicted maps of continuous distributions of the three species across Geographe Bay for the biomass and abundance as defined by the GAMs of best fit for individual 

study species. Observed biomass and abundance estimates plotted as well.
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4.5.3 Patterns in biomass distribution of the modelled 

species 

The predicted distribution and the extent of ecological niches across the bay were similar for 

biomass of the Baldchin groper (Choerodon rubescens) and Australasian snapper 

(Chrysophrys auratus) identifying shallow coastal areas with high structural complexity as 

the most suitable hotspot area for juveniles of these species. Deeper areas of the bay with 

high complexity relief were also found to be good predictors of biomass distribution of 

juvenile G. hebraicum. In contrast, mature adults of this species were predicted to be 

associated with shallow coastal waters. However, the hotspot maps of cumulative biomass of 

large, sexually mature fish did not indicate any parts of the bay as being crucial for this stage 

of the species’ life history. This outcome is somewhat expected, as a variety of juvenile fish 

are known to use structurally complex habitats such as canopy forming macroalgae or coral 

reefs as their nursery areas (Evans et al., 2014). In addition, small-size fish typically have 

smaller home ranges and are less likely to move as far as larger bodied conspecifics (Nash et 

al., 2015), which may have helped to identify the environmental niche requirements of 

juvenile fish more accurately. Many juveniles use near shore habitats as predation refugia 

and as a trade-off between high prey availability and low juvenile survivor rates on reefs 

(Kimirei et al., 2013). Our findings highlight the potential vulnerability of both the juvenile 

and the sexually mature adults of the three species which rely on the near shore areas. This 

important outcome would have been missed if only the abundance patterns of these species 

had been considered. 

4.5.4 The benefits of using individual fish biomass in 

spatial modelling 

The biomass model fits had notably higher explanatory power in comparison to the 

abundance models. The higher explanatory power of biomass is particularly beneficial for 

models developed for overfished and/or rare species where a high proportion of zeroes in 

datasets could result in poor model fits, and consequentially low explanatory power. While 

new methods for modelling non-linear relationships between rarely recorded marine species 

and their environment are being developed (e.g. VGAM package), we suggest using biomass 

and abundance models to complement each other. Such an approach could be extremely 

useful for spatial management when mapping distribution patterns in fish diversity and for 

understanding population dynamics of endangered species. In many cases, abundance and 

biomass patterns could produce very different curves for the same species (Thibault et al., 

2004).  
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Figure 4.6 Hotspots map for cumulative biomass of large sexually mature adults (a), juveniles (b) and 

cumulative predicted abundance (c) of the three study species. Rasters reclassified based on known 

biomass estimates of the study species. 
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There is often a shift associated with establishment of marine reserves, where fished sites are 

characterised by higher abundance than biomass and protected sites by higher biomass of 

large-bodied species than the relative abundance of species (Edgar & Stuart-Smith, 2009; 

Anticamara et al., 2010). While species’ abundance is clearly an important measure, biomass 

estimates could be more relevant for explaining patterns of resource use or niche partitioning 

among conspecifics than abundance models (McGill et al., 2007). 

4.5.5 Benefits to management 

As a fisheries management tool, mapping key areas of seascape that are crucial for different 

life-history stages of the same species or multiple species followed by relevant management 

actions, may result in lower losses and higher survival of vulnerable life stages, which in turn 

can preserve critical spawning stock biomass of exploited species, and enhance fishery yields 

(Dugan & Davis, 1993). Nursery areas contribute to adult population patterns (Huijbers et 

al., 2013). Enhancing the ability to monitor juvenile recruitment variability in areas of 

critical juvenile habitat would, for some species, allow predictions of future strength of 

cohorts to be made before they enter the fishery (Lewis et al., 2012). By creating temporary 

closures of adult breeding grounds during spawning season, it is possible to enhance the 

reproductive dynamics of the entire population of the target species. For example, longer 

spawning season and larger amount of eggs per batch is documented for large mature 

females of G. hebraicum in comparison to the smaller mature females, making them 

extremely vulnerable to fishing during the spawning period (WA Department of Fisheries, 

2013). Protecting the crucial areas of seascape for large sexually mature females could 

enhance the abundance and biomass of depleted stocks (Polacheck, 1990; Denny et al., 

2003), which in turn can benefit other fish species relying on healthy ecosystem functioning 

(e.g. Olds et al., 2014). Our study provides a novel approach that can be incorporated into 

efforts to address this knowledge gap for a wide variety of species. The hotspot maps can 

optimise limited management resources by identifying entire areas that may not require 

future in-depth surveys. Following in situ evaluation of the predicted hotspots, these areas 

should be considered in zoning schemes and become priority areas for marine spatial 

monitoring and management (Schmiing et al., 2013). They should also be included in any 

future re-zoning plans. 

4.6 Conclusions 

In this study we used spatial modelling to examine patterns in the abundance and biomass 

distributions of three iconic fish species across a continuous mosaic of habitats in order to 

identify niche requirements and resource partitioning between fish at different life stages. 
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The biomass models in this study were characterised by higher explanatory power for all 

modelled species, supporting future use of this novel approach for examining spatial ecology 

of other demersal fish species. Pairing video observations and measurements with remotely 

sensed (hydroacoustic or LIDAR) benthic habitat data with species distribution models has 

tremendous potential for understanding fine-scale species-environment relationships of 

demersal fish. In addition, mapping key areas of seascape that are crucial for different life-

history stages of the same species, or multiple species may benefit actively fished species, 

particularly those species that exhibit high site fidelity and relatively localised movement 

patterns. By implementing management actions in the hotspot areas that provide protection 

from disturbance, such as bycatch or undersize fishing, it is possible to preserve the critical 

spawning stock biomass of exploited species. This in turn can result in higher survival of 

vulnerable life stages of targeted and non-targeted species, enhance fishery yields outside the 

protected hotspot areas and promote healthy ecosystem functioning. Furthermore, the 

hotspot areas may preserve critical spawning stock biomass of exploited stocks more 

effectively than size limits and catch quotas for some species by preserving natural size 

distributions and densities (Dugan & Davis, 1993).  

Postscript: In the next chapter I examine the performance of stereo-BRUVs as data 

collection method on fish occurrence in combination with the ecological spatial modelling. I 

compare between models based on data collected using this method with models based on 

towed stereo-video datasets. 
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Chapter 5 Comparing two remote video 

survey methods for spatial predictions of the 

distribution and habitat suitability of demersal 

fishes 

5.1 Abstract 

Marine spatial management often utilises an array of survey and data analyses methods in 

order to answer specific research questions and to improve conservation efforts. With recent 

developments of ecological spatial modelling as a decision making tool, the usefulness of 

some of the long-established survey methods for species distribution modelling should be 

revised due to the biases they may introduce with respect to habitat associations of fish. 

Generalised additive models were used to model the probability of occurrence of six focal 

species after surveys that utilised two remote underwater stereo-video sampling methods (i.e. 

baited and towed video). Models developed for the towed stereo-video method had 

consistently better predictive performance for all study species, except for one. The relative 

importance of habitat variables for explaining variation in distribution patterns of fish 

differed between survey methods, the most important variables across the two survey 

methods being bathymetry followed by structural complexity. Models based on baited video 

dataset regularly included large-scale measures of structural complexity, suggesting fish 

attraction to a single focus point by bait. Conversely, models based on the towed video data 

often incorporated small-scale measures of habitat complexity and were more likely to 

reflect true species-habitat relationships. The lower cost associated with the use of the towed 

video systems for surveying low-relief seascapes provides additional support for considering 

this method for marine spatial management purposes. Our study provides evidence that 

towed stereo video is a robust, non-intrusive, low cost method for fine-scale data collection 

that can be useful for spatial ecological modelling. 

5.2 Introduction 

Finfish are widely recognised as an important component of marine systems with crucial 

roles in terms of ecological processes, tourism, and fisheries (Andrew & Mapstone, 1987; 

Morrison & Carbines, 2006). Anthropogenic influences such as climate change, habitat loss 

and increased fishing pressure alter the biodiversity, abundance and distribution of finfish, 

potentially compromising their ecological roles and services (Sala & Knowlton, 2006; 
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Butchart et al., 2010). Good fisheries management is crucial for building the adaptive 

capacity and resilience to climate-driven changes (Ogier et al., 2016). However, the extent of 

these changes is not always apparent over spatial scales relevant to management. Hence 

identification of significant species-environment patterns across varying spatial scales and 

monitoring shifts in these patterns relative to changing environmental conditions can 

contribute to local and regional climate change adaptation strategies and overall goal of 

preserving biodiversity. 

Remote video systems provide a way to non-destructively survey fish assemblages at depths 

beyond the limits of SCUBA diving and is a common method for surveying patterns of 

assemblage composition and population dynamics of fish (Cappo et al., 2006; Terres et al., 

2015). Models that pair video observations data with benthic habitat data that has been 

remotely sensed using hydroacoustic or LiDAR technologies have become a powerful tool 

for understanding the relationships between demersal fish species and their environments 

(e.g. Pittman et al. 2009; Moore et al. 2010; Monk et al. 2011). Furthermore, pairing these 

species-distribution models (SDMs) with GIS and extrapolating models into non-surveyed 

areas has tremendous potential for the assessment of ecosystem dynamics and marine spatial 

management (Stamoulis & Delevaux, 2015). Among the various techniques currently 

available for remote video sampling of fish, baited remote stereo video (stereo-BRUVs) are 

probably the most established. Stereo-BRUVs have been used to monitor individual species 

targeted by fisheries, fish assemblage composition (Malcolm et al., 2007; Harvey et al., 

2013), the effectiveness of marine protected areas (Watson et al., 2007) and the impact of 

seismic surveys and oil spills (www.aims.gov.au/docs/research/monitoring/seabed/video-

monitoring.html; accessed March 2016). In recent years, data obtained from stereo-BRUVs 

has also been widely used in SDMs (see Moore et al. 2009; Chatfield et al. 2010; Fitzpatrick 

et al. 2012; Terres et al. 2015 for examples). However, there are problems associated with 

this method that limit the precision and predictive power of the models. 

Baited video systems attract fishes to a bait plume or camera station, making it impossible to 

estimate true abundance or density of sampled species and it is common practice to deploy 

the individual stereo-BRUVs systems at least 250-500 m apart to keep observations 

independent (Cappo et al., 2003; Harvey et al., 2007; Terres et al., 2015). Hence the premise 

for spatial analysis for data collected with stereo-BRUVs is that this method samples fish 

assemblage composition in 200 m radius increments or greater (Moore et al. 2011). This 

could create a discrepancy when modelling species-habitat relationships and reduce the 

accuracy of the ecological niche predicted by the model for each species. For example, in the 

http://www.aims.gov.au/docs/research/monitoring/seabed/video-monitoring.html
http://www.aims.gov.au/docs/research/monitoring/seabed/video-monitoring.html
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study by Moore et al. (2009), sand-affiliated species were predicted to be present over reef 

probably due to an aggregation effect introduced by the stereo-BRUV system.  

Small-scale landscape heterogeneity has ecological value, supporting different and diverse 

communities (Healey & Hovel, 2004) or key community processes such as distribution and 

abundance of prey or risk of predation (Laurel et al., 2003). At larger scales, landscape 

heterogeneity that considers combinations of both patchy and contiguous habitats is required 

to maximise fish diversity and abundance (Pittman et al., 2009). Thus, while models based 

on broad-scale habitat classification provide a good fit and predictive accuracy, fine-scale 

models explain a greater proportion of observed patterns in distribution and provide greater 

insight into spatial ecology of demersal fish species (Chatfield et al. 2010). Furthermore, 

environmental variables that are significant at coarse spatial scales may not be at finer spatial 

resolution (Chatfield et al., 2010). These studies highlight the importance of fine-scale 

habitat information when modelling species distributions and the potential biases that stereo-

BRUVs can introduce. 

Towed stereo-video has advantages similar to baited video systems, as it can be deployed at 

great depths, is non-destructive and provides a permanent record of fish lengths. In addition, 

towed stereo-video produces comparable results to diver-operated video transects (Stobart et 

al., 2007; Warnock et al., 2016) and is thought to be the least biased method for sampling 

abundance and biomass of sparids across multiple size ranges (Morrison & Carbines, 2006). 

Additional benefits of the towed stereo video are that they bear low rick for whale 

entanglement, continuously capture data over seascape transition zones (Spencer et al., 2005) 

allowing sample boundaries to be accurately estimated. The transition zones between 

different benthic substrates have previously been identified as important determinants of the 

structure and diversity of fish assemblages (Moore et al., 2011) because they provide a 

broader array of refuges and increased foraging and spawning opportunities (Friedlander & 

Parrish, 1998). Furthermore, towed video is a useful technique for rapid surveys of low-relief 

seascapes, vastly reducing manpower and vessel time (Watson et al., 2005; Monk et al., 

2010) and providing comparable results to alternative survey methods such as bottom trawl 

and diver operated video (McIntyre et al., 2015; Warnock et al., 2016). Known limitations of 

towed video are typically associated with movement of the system through the water 

column. Fish that exhibit avoidance behaviour to moving objects could be frightened by the 

camera system  which could result in low estimates of abundance and species richness 

(McIlwain et al., 2011), while other species may be attracted to moving objects. Towed 

video may also get tangled and underestimate cryptic fish especially when the system is 
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towed over highly rugose reef or dense macroalgal canopy and consequentially bias model 

predictions by including false absences (Hirzel et al., 2001; Monk et al., 2010).  

In this study we compare fish species-environment relationships derived from either stereo-

BRUVs or towed stereo video systems (hereafter BV and TV, respectively) and use these to 

develop species distribution models. The specific aims of this study were: 1) To identify 

fish-habitat relationships and compare environmental variables from best-fit models for each 

survey method. 2) To develop predictive maps of fish distributions based on habitat presence 

(i.e. predicted ecological niche) in the study area and compare these predictions across two 

survey methods. 3) To assess cost-effectiveness of each method to facilitate decisions about 

which method is most suitable for marine spatial management.  

 

Figure 5.1 Inset: The location of the Geographe bay study area on the south-west coast of Western 

Australia. Main map: Shading indicates bay’s bathymetry. Black lines indicate towed stereo-video 

transects. Grey dots indicate baited remote stereo-video deployments. 

5.3 Methods 

5.3.1 Study area 

Geographe Bay is a ~100 km wide, relatively shallow, north-facing embayment with 

seagrass cover that can at times exceed 60% (McMahon et al., 1997). The bay is located in 

southwestern Australia, approximately 220 km south of Perth (Figure 5.1). The majority of 
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the seafloor is covered by unconsolidated sediments that have been deposited over older clay 

layers. There is also a series of discontinuous limestone ridges, dominated by canopy-

forming brown macroalgae, that run parallel to the coast (Wernberg et al., 2003; Van Niel et 

al., 2009). 

5.3.2 Fish occurrence data 

Fish occurrence data was collected between the 9 and 17 December 2014. Two methods 

were used for sampling fish assemblages in Geographe Bay: a point observation method 

using BV and a transect method using TV. The BV sampling was spatially stratified 

according to the size of the study area and depth: random points for sampling were allocated 

to adequately cover the bathymetric gradient in the bay. In addition, major substrate types 

(e.g. reef ridge) were particularly targeted based on the skipper’s local knowledge of the 

study area. In addition, distance controls were used in the planning stage to avoid bait plume 

overlap and reduce the likelihood of fish moving between BV systems, with each pair of 

stereo systems at least 400 m apart from each other on the day of deployment. Each system 

comprised two wide-angle Sony CX12 high-definition video cameras that had been baited 

with approximately 800 g of crushed pilchards (Sardinops sagax), and lowered to the bottom 

for a 60 minute soak time. The 217 video recordings from these deployments were analysed 

using the software EventMeasure (SeaGIS Pty Ltd). For this study we only included fish 

within 7 m in front and 2.5 m on each side of the cameras and approximately 3 m into the 

water column above the system. Additional information on design, calibration (Harvey & 

Shortis, 1995) and use of the stereo-BRUVs is presented in detail in the literature (e.g. 

Cappo et al. 2003; Langlois et al. 2012 and references therein). 

The TV camera system also consisted of two wide angle Sony CX12 high-definition video 

cameras mounted 0.7 m apart. The cameras were mounted on a custom cage to protect the 

system during collisions and provide a secure towing point. The cameras were inwardly 

converged at eight degrees to gain an optimized field of view with stereo-coverage from 0.5 

m to the maximum visibility (Supplement 5.7.1). The same distances for fish inclusion in the 

video as for the BV were applied for this method. The system was towed immediately 

behind the boat at speeds 0.5–2 knots at a height approximately 1 m above the seafloor and 

tilted downward to cover the immediate benthos as well as the water column in the field of 

view of the cameras. This configuration facilitated an ample field of view to observe 

demersal fish and allowed safe navigation of the equipment. The video signals were 

transferred to the surface via an umbilical cable where they were monitored in real-time, 

time stamped and synchronised with positional data that were recorded at 2 s intervals with 

handheld GPS. Nine video transects were executed capturing fish assemblage composition 
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along continuous physical and biological gradients within the study area (e.g. substrate and 

benthic biological habitat) totalling 22 hours of georeferenced underwater towed video 

footage, covering 83 linear km of seafloor. Subsequently, the video footage of fish species 

occurrence were visually analysed with the EventMeasure software (www.seagis.com.au). 

In both fish occurrence datasets, all fish were identified to the lowest taxonomic level 

possible and provided a reliable species presence records for future modelling. As prevalence 

of species can affect modelling outcomes and performance of models (Franklin, 2010), we 

chose a subset of six focal species that were often observed in both video survey techniques 

and represent a diversity of demersal fish life histories, size, and mobility in the study region 

(Table 5.1). To generate pseudo-absences for the BV fish occurrence dataset, we assigned 

absence to each individual deployment where the particular focal fish taxon was not 

observed. This method has been previously used in modelling species-environment 

relationships (Moore et al., 2009; Monk et al., 2012). The final presence-absence BV dataset 

was partitioned into training (75%) and testing (25%) data for individual focal species. 

To generate reliable pseudo-absences for fish observations obtained from constantly moving 

TV system, we applied kernel density function to the focal species occurrence dataset using 

ArcGIS 10.2.2. The probability density function relies on assumption that presence is a 

probabilistic function mainly affected by species abundance and detectability (Silverman, 

1986; Brotons et al., 2004). Kernel density function was applied to point data with observed 

presences of the focal species in order to generate a continuous surface of probabilities of 

occurrence of the focal species along transect. The neighbourhood search radius for kernel 

density calculations was set to 400 m to represent similar distance that was used for the BV 

systems. The results of probability surface were further analysed in PresenceAbsence 

package (Freeman & Moisen, 2008) using R statistical software version 3.2 (R Core Team, 

2014) in order to calculate the optimal threshold for translating a probability surface into 

presence-absence maps. We selected the optimal threshold based on the maximum values of 

Kappa, which is a commonly used chance-corrected measure of agreement for presence-

absence ecological data (Elith et al., 2006; Freeman & Moisen, 2008). The kernel density 

values below the optimal threshold were converted to pseudo-absences and true observations 

of focal species in the video recording from the TV system were kept as presences. The final 

pseudo-absences for modelling were randomly generated from combination of areas with 

kernel density below the appointed threshold and with no fish taxa observations from the TV 

to create a final ratio of 1:1 of true presences and pseudo-absences of a focal species along 

transects. The final presence-absence TV datasets were partitioned into training (75%) and 

testing (25%) data for individual modelled species.  
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Table 5.1 Fish species modelled, with summary of the number of occurrences used in model building based on the two survey methods: baited remote 

stereo-video (BV) and towed stereo-video (TV). 

Scientific name Common name Family Method Presence Pseudo-

Absence 

Additional info 

Austrolabrus maculatus Black-spotted wrasse Labridae BV 

TV 

97 

117 

108 

117 

Small size endemic species 

Coris auricularis Western King wrasse Labridae BV 

TV 

140 

234 

60 

234 

Large size mobile endemic species 

Eupetrichthys angustipes Snakeskin wrasse Labridae BV 

TV 

58 

59 

155 

59 

Small size endemic species 

Notolabrus parilus Brown-spotted wrasse Labridae BV 
TV 

140 
70 

65 
70 

Large size endemic species 

Ophthalmolepis lineolatus Southern Maori wrasse Labridae BV 

TV 

150 

113 

63 

113 

Large size mobile endemic species 

Upeneichthys vlamingii Blue-spotted Goatfish Mullidae BV 

TV 

121 

85 

86 

85 

Mobile species, bycatch in 

commercial and recreational fisheries 
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5.3.3 Habitat data  

The bathymetric data was extracted from a mosaic of LiDAR and multibeam surveys 

collected by Fugro Corporation Pty Ltd gridded to a cell size of 4*4 m. The LiDAR 

hydrographic survey was performed between April and May 2009 on behalf of the 

Department of Planning as a part of a national coastal vulnerability assessment. The LiDAR 

area extended seaward from the coastal waterline to the 20 m marine nautical navigation 

chart contour and constituted the majority of bathymetric data. For further information on 

LiDAR collection and processing see www.planning.wa.gov.au, accessed May 2016. In 

addition to the LiDAR, a small area of deeper water was surveyed during March-April 2006 

using Reson 8101 multibeam in the north-west part of the study area as part of the Marine 

Futures biodiversity surveys (see Radford et al. 2008 and matrix-prod.its.uwa.edu.au/ 

marinefutures/research/project; accessed July 2016; accessed May 2016 for further details). 

In addition to bathymetry, we derived nine variables that describe the structure and 

complexity of the seafloor and were previously shown to influence the distribution of fish 

using the Spatial Analyst toolkit in ArcGIS 10.2.2 (Moore et al. 2009; Monk et al. 2011; 

Table 5.2). 

5.3.4 Species distribution modelling 

To infer the effect of habitat complexity on the probability of occurrence of six fish taxa 

across the two survey methods, we applied generalised additive models (GAMs) developed 

for individual study species and the full subsets approach (Zuur et al., 2009). GAMs are the 

most common and well developed method for modelling fish habitats (Valavanis et al., 

2008) and the full subsets method provides an unconstrained approach for fitting ecological 

responses to the predictor variable (Zuur et al., 2009; Fulton et al., 2014). All models were 

fitted with binomial error distributions and logit link functions in R version 3.2.0 (R Core 

Team, 2014). To produce conservative models and to avoid model overfitting, the number of 

smooths (knots) was restricted to k = 4 (Wood, 2006) and the model fits for all possible 

combinations of variables (total possible model fits =1023) were compared using differences 

in Akaike Information Criterion corrected (∆AICc) for finite sample size (Burnham & 

Anderson, 2003). In addition, to rank the fitted models we computed the Akaike weights 

(Buckland et al., 1997) to examine the weight of likelihood in favour of a model being the 

best in the given set of models. Best models were selected based on having lowest AICc 

value, smallest AICc difference (∆AICc < 2) and having the highest weight across all 

possible models (Burnham & Anderson, 2003). To explore the relative importance of each 

variable, we summed the weighted AICc values across all possible models.  
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Table 5.2 Description of the seafloor variables used in model building. 

 

Environmental 

Predictor  

Description 

Bathymetry Elevation in metres relative to the Australian Height Datum. 

Eastness Trigonometric transformation of a circular azimuthal direction of 
the slope (sin (aspect)). Values close to 1 represent east-facing 

slope, close to -1 if the aspect is westward. 

Northness Trigonometric transformation of a circular azimuthal direction of 

the slope (cos (aspect)). Values close to 1 represent north-facing 

slope, close to -1 if the aspect is southward. 

Slope First derivative of elevation. Average change in elevation, 

steepness of the terrain, % rise. 

Range 2, 5, 10 Maximum minus the minimum elevation in the local 
neighbourhood (local relief). Calculated at window sizes of 2*2, 

5*5, 10*10 cells respectively, which equates to ground area of 64, 

400 and 1600 m2 (i.e. fine, medium and coarse scale local relief). 

Plan curvature Secondary derivative of elevation. Measure of concave/convexity 
perpendicular to the slope. 

Profile curvature Secondary derivative of elevation. Measure of concave/convexity 

parallel to the slope. 

Curvature Combined index of profile and plan curvature. 
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5.3.5 Model evaluation and predictions 

The test dataset was used to evaluate the discrimination and accuracy of the best developed 

models for all species across two methods. We used threshold independent Receiver 

Operating Characteristic (ROC) and the area under the curve (AUC) as graphical means to 

test the sensitivity (true positive rate) and specificity (false positive rate) of a model output 

(Fielding & Bell, 1997; Pearce & Ferrier, 2000). The area under the ROC curve is a measure 

of overall fit and commonly varies between 0.5 (no predictive ability) and 1 (perfect fit; Elith 

et al. 2006). In addition, we calculated a threshold dependent Kappa statistics which is 

commonly used in ecological studies with presence-absence data and provides an index that 

considers both omission and commission errors (Cohen, 1960; Elith et al., 2006). Pfair was 

chosen as the threshold to convert predicted probabilities of occurrence to presence/absence 

values as it minimises the difference between sensitivity and specificity and provides a 

measure of how well the model predicts both presences and absences (Moore et al., 2009; 

Chatfield et al., 2010). Pfair was also found to be better at selecting a threshold value when 

the prevalence of species was not close to 50% (Liu et al., 2005), as in the case of this study. 

Final comparison for model predictive performance across two survey methods were done 

by comparing the AUC values of best model fits developed for individual species. 

Semivariograms were used to assess the level of spatial autocorrelation in the residuals of all 

models using Automap package in R (Hiemstra et al., 2009). Low levels of spatial 

autocorrelation (semi-variance 0.18 – 0.28) were found in TV datasets, which can be 

attributed to the initial method of generating pseudo-absences for this dataset. The kernel 

density function is relying on point observation of presences in order to generate continuous 

surfaces of probabilities of occurrence, which in turn were used to generate pseudo-absences. 

Furthermore, we plotted model residuals and final model predictions against the spatial 

coordinates to examine systematic spatial patterns in fitted models and distribution of 

correct/incorrect classifications. After evaluation, the best models for individual species were 

predicted on 4*4 grid using both train and test datasets across two sampling methods. Binary 

presence-absence maps were then constructed using the Pfair probability thresholds. 

5.3.6 Costs 

Accurate time budgets were maintained for all activities associated with each methodology 

and were expressed in staff time (number of hours per person devoted to each activity; 

Langlois et al., 2010; Holmes et al., 2013). We also included direct costs associated with 

general logistics (e.g. vessel and camera systems cost) for each survey method. Time not 

directly associated with the actual survey task (e.g. travel time to and from survey sites, 
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accommodation costs) was excluded as it was similar for both methods. Time budgets were 

divided into three categories: Pre-Field Time (e.g. equipment calibration: 10*stereo-BRUV 

systems, one towed stereo video system), In-Field Time (e.g. data collection, video 

download), and Post-Field Time (e.g. video analysis). To make comparison possible, all 

estimates of In-Field costs were standardised to 40 * 60 minutes stereo-BRUV deployments 

(10 stereo-BRUV systems rotated four times within an eight hour day) and 8 hour-long video 

recording from the towed stereo video system. 

5.4 Results 

5.4.1 Model selection and variable contributions 

The best models for explaining probabilities of occurrence differed between methods for all 

six fish species (Table 5.3). Occasionally there were a number of candidate models tied for 

best for data analysis with none or only marginal differences in Akaike weights for evidence 

support (i.e. candidate models for Eupetrichthys angustipes BV in Table 5.3). The 

explanatory power of the best models did not differ greatly between methods for the same 

species. Notable exceptions were models using BV data had higher adjusted R
2
 values than 

models using TV data for Coris auricularis and vice versa for Eupetrichthys angustipes 

(Table 5.3). 

The most important variables for explaining the probability of occurrence of the study 

species across two survey methods was bathymetry followed by the range variable, which is 

indicative of structural complexity of relief (Figure 5.2 and Table 5.3). The bathymetry 

variable was consistently identified as important with exception being models fitted for 

Notolabrus parilus when using the TV method and Upeneichthys vlamingii when using the 

BV method. Indeed all models for U. vlamingii presence derived from BV data were 

generally poor accounting for ≤ 2% variance in data. Range was also consistently included in 

models, though the spatial scale at which relief was considered important varied among 

species and methods. When using TV data, finer scale relief (range 2) was often considered 

more important than broader spatial measures of relief (range 10). Conversely, models using 

BV data consistently included range 10 as an important variable (Figure 5.2, Table 5.3). 

There were linear and non-linear correlations between the environmental variables and 

probability of occurrence of all study species identified by the GAMs of best fit (Figure 5.). 

Nine out of twelve models of best fit had bathymetry as important environmental variable. 

The probability of occurrence of all species was typically higher in deeper water with 

exception to Notolabrus parilus when using the BV method. Range 10 and slope had a 
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positive correlation with probabilities of species’ occurrence, while range 5 had mixed effect 

on probabilities of occurrence. Range 2, profile (concavity/convexity of the slope) and 

easting (azimuthal slope direction) all had linear negative correlations with probabilities of 

occurrence of the study species (Figure 5.).  

 

Figure 5.2 Relative importance of all fitted environmental variables as indicated by the sum of 

weighted AICc for each variable across all fitted models. 
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5.4.2 Predictive performance 

The predictive performance of models of best fit developed for the six species, was good for 

one model (AUC 0.8-0.9), fair for two models (AUC 0.7-0.8), and poor for nine models 

(0.5< AUC < 0.7; Table 5.4). Models developed for the TV method had consistently better 

predictive performance, the exception being for Ophthalmolepis lineolatus models where the 

BV method had a slightly higher AUC. Similar general trends were evident for Kappa 

statistics, with models developed for the TV method having greater Kappa values except the 

O. lineolatus BV model (Table 5.4). Sensitivity values (correct presences) ranged from 0.41 

to 0.75 and specificity ranged from 0.48 to 0.78 (correct absences). The total proportion of 

correct predictions (presence and absence) ranged from 0.44 for Upeneichthys vlamingii BV 

to 0.77 for Coris auricularis TV (Table 5.4). These results indicated that data from the TV 

method better predict the likely distributions than BV for all except one species. However, 

poor model fits suggest that all fitted models could benefit from additional environmental 

information. 

5.4.3 Mapping species distributions 

Presence absence maps provided a detailed representation of continuous predicted 

distributions of the six species using the two survey methods (Figure 5.4 and Figure 5.3 for 

partial response plots as result of GAMs of best fit). The distribution of Austrolabrus 

maculatus, Coris auricularis and Ophthalmolepis lineolatus, all reef associated species, were 

predicted to be in close proximity to the reef ridge by both survey methods (Figure 5.4a-d, i-

j). In contrast, the ecological niche predictions for Eupetrichthys angustipes, Notolabrus 

parilus and Upeneichthys vlamingii differed between the two survey methods. The best fit 

GAM for E. angustipes from the BV data predicted this species to be spread across the bay 

and associated with flat protected areas. Whereas habitat associations predicted by the TV 

data for this species were mainly in deeper protected waters (Figure 5.4e-f). The distribution 

of Notolabrus parilus using the BV data predicted high probability of detection along the 

shallow reef ridge. Whereas the distribution based on the TV data, predicted this species to 

more closely associate with steep terrain and maps show an even distribution across much of 

the bay with high probability of detection in the more exposed western part of the bay 

(Figure 5.4g-h). Models for explaining variation in Upeneichthys vlamingii presence using 

BV data had weak explanatory power (Table 5.3) and there was no particular area of the bay 

that was recognised unsuitable for the Upeneichthys vlamingii based on BV data. Predictions 

from the TV data however mapped intermediate to deep water areas as most suitable for this 

species (Figure 5.4k-l).  



 

84 

Table 5.3 Best descriptor variables (+) and the summary of candidate models (∆AICc < 2) for predicting probability of occurrence of the six study species across two survey 

methods: stereo-BRUVs (BV) and towed stereo-video (TV). GAMs of best fit identified by ∆AIC = 0 and highest Akaike weights for evidence support. 

Species/method Intercept Bathymetry Slope Curvature Plan Profile Range10 Range2 Range5 Eastness 
Adjusted 

R2 

df AICc ∆AICc 
Akaike 

weight 

Austrolabrus maculatus BV 0.026 + 
        

0.06 3 199.43 0 0.12 

Austrolabrus maculatus BV 0.033 + 
    

+ 
   

0.08 5 200.70 1.27 0.06 

Austrolabrus maculatus TV -0.018 + + 
  

+ 
 

+ 
  

0.15 9 242.38 0 0.06 

Austrolabrus maculatus TV -0.018 
 

+ 
  

+ 
 

+ 
  

0.12 7 242.74 0.36 0.05 

Austrolabrus maculatus TV -0.016 + + + 
   

+ 
  

0.14 9 243.19 0.80 0.04 

Austrolabrus maculatus TV -0.019 
 

+ 
  

+ 
 

+ 
 

+ 0.14 9 243.61 1.23 0.03 

Austrolabrus maculatus TV -0.014 
 

+ + 
   

+ 
  

0.11 7 243.70 1.32 0.03 

Austrolabrus maculatus TV -0.021 + + 
  

+ 
 

+ 
 

+ 0.17 11 243.80 1.42 0.03 

Austrolabrus maculatus TV -0.016 + + 
  

+ 
 

+ + 
 

0.17 11 243.86 1.48 0.03 

Coris auricularis BV 1.132 + 
    

+ + 
  

0.29 7 155.27 0 0.22 

Coris auricularis BV 1.169 + 
  

+ 
 

+ + 
  

0.32 9 156.58 1.31 0.11 

Coris auricularis TV 0.016 + 
      

+ 
 

0.11 5 465.88 0 0.13 

Coris auricularis TV 0.015 + 
        

0.1 3 466.33 0.45 0.11 

Coris auricularis TV 0.016 + 
    

+ 
   

0.11 5 467.29 1.41 0.07 

Coris auricularis TV 0.018 + + 
     

+ 
 

0.12 7 467.40 1.52 0.06 

Eupetrichthys angustipes BV -0.938 
       

+ 
 

0.06 3 180.93 0 0.05 

Eupetrichthys angustipes BV -0.930 
     

+ 
   

0.06 3 181.04 0.11 0.05 

Eupetrichthys angustipes BV -0.981 
  

+ 
    

+ 
 

0.09 5 181.61 0.68 0.04 
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Eupetrichthys angustipes BV -0.964 
   

+ 
   

+ 
 

0.09 5 181.65 0.72 0.03 

Eupetrichthys angustipes BV -0.961 
   

+ 
 

+ 
   

0.09 5 181.66 0.73 0.03 

Eupetrichthys angustipes BV -0.971 
  

+ 
  

+ 
   

0.09 5 181.77 0.84 0.03 

Eupetrichthys angustipes BV -1.004 + 
      

+ 
 

0.08 5 182.21 1.27 0.03 

Eupetrichthys angustipes BV -0.999 + 
    

+ 
   

0.08 5 182.30 1.37 0.03 

Eupetrichthys angustipes BV -1.038 + 
  

+ 
 

+ 
   

0.12 7 182.63 1.70 0.02 

Eupetrichthys angustipes BV -1.036 + 
  

+ 
   

+ 
 

0.12 7 182.70 1.77 0.02 

Eupetrichthys angustipes BV -1.047 + 
 

+ 
    

+ 
 

0.12 7 182.83 1.90 0.02 

Eupetrichthys angustipes BV -0.975 
    

+ 
  

+ 
 

0.08 5 182.86 1.93 0.02 

Eupetrichthys angustipes TV -0.433 + 
        

0.43 3 94.54 0 0.26 

Notolabrus parilus BV 0.670 + 
        

0.13 3 176.57 0 0.14 

Notolabrus parilus BV 0.729 + 
    

+ 
   

0.16 5 176.87 0.30 0.12 

Notolabrus parilus BV 0.865 + + 
   

+ 
   

0.2 7 177.39 0.82 0.09 

Notolabrus parilus TV 0.153 
 

+ 
       

0.11 3 142.67 0 0.12 

Notolabrus parilus TV 0.203 
 

+ + 
      

0.15 5 143.96 1.28 0.06 

Notolabrus parilus TV 0.194 
 

+ 
 

+ 
     

0.14 5 144.23 1.56 0.05 

Ophthalmolepis lineolatus BV 1.154 + 
    

+ 
   

0.22 5 164.41 0 0.20 

Ophthalmolepis lineolatus BV 1.191 + 
    

+ 
 

+ 
 

0.25 7 165.79 1.38 0.10 

Ophthalmolepis lineolatus TV -0.219 + 
        

0.09 3 226.77 0 0.16 

Ophthalmolepis lineolatus TV -0.232 + 
     

+ 
  

0.11 5 228.35 1.58 0.07 

Ophthalmolepis lineolatus TV -0.223 + 
      

+ 
 

0.11 5 228.59 1.82 0.06 

Upeneichthys vlamingii BV 0.268 
    

+ 
    

0.02 3 202.32 0 0.10 

Upeneichthys vlamingii BV 0.267 
  

+ 
      

0.02 3 203.04 0.73 0.07 

Upeneichthys vlamingii BV 0.265 
        

+ 0.01 3 203.76 1.44 0.05 
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Upeneichthys vlamingii BV 0.264 
     

+ 
   

0.01 3 204.02 1.70 0.04 

Upeneichthys vlamingii BV 0.264 
       

+ 
 

0.01 3 204.05 1.73 0.04 

Upeneichthys vlamingii TV -0.067 + 
       

+ 0.1 5 177.95 0 0.11 

Upeneichthys vlamingii TV -0.066 + 
        

0.05 3 178.77 0.82 0.07 

Upeneichthys vlamingii TV -0.076 
     

+ 
   

0.04 3 179.23 1.28 0.06 
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5.4.4 Costs 

The main difference in the costs associated with the two methods relate to general logistics 

and pre-field preparations. Surveys using BV method require a vessel large enough to deploy 

10 video systems and accommodate an additional crew member compared to the smaller 

boat and crew required to deploy a single towed video system.  

Table 5.4 Summary of model predictive performance for each fish species across two survey methods: 

stereo-BRUVs (BV) and towed stereo-video (TV). Presences and absences for assessing sensitivity 

and specificity were determined using Pfair as threshold. 

 

Consequently, the vessel and camera systems associated costs could be as much as 6 to 7 

times higher for surveys performed with stereo-BRUVs. In addition, pre-field system 

calibrations took an extra five hours for the BV method (Table 5.5). 

Species/method 

Pfair threshold 

for presence 

Proportion 

Correctly 

Classified 

Sensitivity Specificity Kappa AUC 

Austrolabrus 

maculatus BV 
0.54 0.62 0.65 0.61 0.24 0.64 

Austrolabrus 

maculatus TV 
0.5 0.67 0.67 0.68 0.34 0.66 

Coris 

auricularis BV 
0.6 0.7 0.7 0.71 0.35 0.74 

Coris 

auricularis TV 
0.48 0.77 0.75 0.78 0.54 0.82 

Eupetrichthys 

angustipes BV 
0.33 0.5 0.5 0.5 0 0.61 

Eupetrichthys 

angustipes TV 
0.52 0.69 0.68 0.7 0.36 0.68 

Notolabrus 

parilus BV 
0.71 0.51 0.51 0.5 0.01 0.51 

Notolabrus 

parilus TV 
0.48 0.54 0.56 0.53 0.09 0.6 

Ophthalmolepis 

lineolatus BV 
0.66 0.7 0.7 0.7 0.37 0.76 

Ophthalmolepis 

lineolatus TV 
0.5 0.58 0.58 0.57 0.15 0.62 

Upeneichthys 

vlamingii BV 
0.57 0.44 0.41 0.48 -0.1 0.57 

Upeneichthys 

vlamingii TV 
0.54 0.52 0.52 0.53 0.05 0.62 
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5.5 Discussion 

TV is a robust, non-intrusive, low cost method that can be useful to examine fine-scale 

species-environment associations, which are typically overlooked by the BV. In combination 

with precise habitat data from remote sensing systems, TV may allow rapid identification of 

sensitive or ecologically important areas which are important for marine conservation. We 

found that bathymetry was a good predictor of occurrence patterns of endemic fish species, 

though the relative importance of depth differed among species and with survey methods. 

Depth has been recorded as a strong driver in assemblage pattern of fishes on oceanic islands 

(Luiz et al., 2015). Depth can also be a proxy for other environmental variables, such as light 

penetration, which influences the distribution and species composition of seagrass and algae 

(Kendrick et al., 2002). Canopy-forming seaweeds can drive distribution patterns of fish 

species that rely on these habitats for food (Lim et al., 2016), shelter (Gillanders & 

Kingsford, 1998; Wilson et al., 2014) or nesting (Azevedo et al., 1999).  

The spatial scale at which structural complexity was measured was also an important 

predictor of fish occurrence and differed among species. This may relate to different sized 

species requiring different sized refuges (Friedlander & Parrish, 1998; Wilson et al., 2007; 

Nash et al., 2013), or interspecific variation in motility and home range (Nash et al., 2015), 

or the extent of habitat specialisation (Munday, 2004; Pratchett et al., 2012). However, the 

regular inclusion of large-scale structural complexity of habitat from the BV most probably 

related to fish being attracted from surrounding habitats to a single focus point by the bait. 

Conversely, models based on the TV data often incorporated complexity measured across a 

smaller scale, reflecting the movement of the system across the seascape and recording fish 

presence in areas they inherently occupy and use as refuge within their normal home range. 

Clearly, depth and structural complexity are good predictors of fish distributions, and as 

these metrics are also indicative of key processes that relate to resilience in other systems 

(Graham et al., 2015) they are important variables for spatial planning of marine reserves. 

Moreover, maintaining connectivity between habitat patches with different levels of 

complexity across seascape maintains the structure of fish communities and ecosystem 

function (Olds et al., 2014; Nagelkerken et al., 2015).  
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Figure 5.3 Smoother estimates (solid line) for the environmental predictors as obtained by generalised 

additive models for six study fish species across two survey methods: stereo-BRUVs (BV) and towed 

stereo-video (TV). The approximate 95% confidence envelopes are indicated (grey shading), marks 

along the x-axis are sampled data points. All explanatory variables were fitted with model smooths 

(knots) k = 4. Summary of the environmental predictors is provided in Table 5.2. 
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Figure 5.3 continued Smoother estimates (solid line) for the environmental predictors as obtained by 

generalised additive models for six study fish species across two survey methods: stereo-BRUVs (BV) 

and towed stereo-video (TV). The approximate 95% confidence envelopes are indicated (grey 

shading), marks along the x-axis are sampled data points. All explanatory variables were fitted with 

model smooths (knots) k = 4. Summary of the environmental predictors is provided in Table 5.2.  
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Our results indicate that the choice of data collection method is important for fitting and 

performance of species distribution models. All fitted models for the TV method, except for 

the Southern Maori wrasse Ophthalmolepis lineolatus, provided a better model fit and had 

higher AUC values. This is probably due to TV introducing less variation in datasets by 

sampling fish in their natural habitat. In contrast, BV may lure fish from their natural habitat, 

thus introducing more variation into observed species-habitat relationships (e. g. Moore et al. 

2009). It is clear, however, that all model fits would benefit from incorporation of additional 

biotic variables, such as extent of canopy cover of macrophytes or occurrence of sessile 

invertebrates. For example, previously fitted GAMs for probability of occurrence of the 

Brown-spotted wrasse Notolabrus parilus and O. lineolatus using macroalgal type and 

presence of sessile biota among other substrate associated explanatory variables, were 

characterised by good model fits and AUC > 0.8 for data collected with BV (Chatfield et al., 

2010). In addition, Monk et al. (2012) produced a much lower AUC value for the TV method 

than that reported here for Blue-spotted Goatfish Upeneichthys vlamingii when using only 

seafloor variables and a similar number of occurrences. However, the AUC value for GAM 

fitted for U. vlamingii from the BV method was much higher in the study by Monk et al. 

(2012). One possible explanation for this dissimilarity with our findings could be differences 

in prevalence of modelled species between the two studies. Prevalence of species is known 

to affect modelling outcomes and performance of models (Franklin, 2010). The overall 

sample sizes in both studies were similar, however the prevalence of U. vlamingii in our 

study was four times higher than that reported by Monk et al. (2012).  

While the predictive performance of models varied between methods, the predicted 

distributions of species across the bay and the extent of the ecological niches predicted by 

both methods were similar for four of the study species. For the remaining two species 

(Eupetrichthys angustipes and Upeneichthys vlamingii), the distribution patterns were more 

clearly defined by the TV method. The similarity in niche predictions between the two 

datasets could be attributed to choice of the modelled species, which are mostly narrow 

distributional range and/or small size species. Small sized fish tend to have smaller home 

ranges and are less likely to move as far as larger bodied counterparts (Nash et al., 2015). 

Furthermore, narrowly distributed species exhibit minimal niche variation, and are more 

reliably modelled when extrapolating to unsurveyed areas (Segurado & Araujo, 2004; Monk 

et al., 2010). While the TV may provide more refined distribution models than BV, the 

applicability of higher resolution information to spatial management will most certainly vary 

among species in question.  
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Figure 5.4 Predicted niche distributions in Geographe Bay as defined by the GAMs of best 

fit for individual study species across two sampling methods.  
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For example, large mobile carnivores would be better surveyed using BV, where bait is 

necessary for attracting these rarely occurring species in to the field of view of the camera 

system (Cappo et al., 2004), or they are scared by the camera system moving through the 

water. In addition, fish species associated with structurally complex habitats or cave-

dwelling species may be more effectively surveyed using methods that can effectively search 

caves and overhangs (Watson et al., 2005; Holmes et al., 2013; Goetze et al., 2015). 

However, where there is extensive low-relief habitat, such as the seagrass meadows surveyed 

by this study, the TV appears to perform better than the BV in terms of examining the 

natural relationships between fish and their habitat. Moreover, models based on TV datasets, 

where boundaries of a surveyed area can be defined and absolute species abundance or 

density can be calculated, will be a significant step towards improving the biological appeal 

of spatial modelling in the marine environment (Hobbs & Hanley, 1990; Pearce & Ferrier, 

2001; Moore et al., 2011). 

Table 5.5 General costs and staff time budgets (total hours devoted to each activity) associated with 

data collection by each of the survey methods. 

 

a large vessel carrying 4 crew and staff deploying 10 stereo-BRUVs; small vessel carrying 3 crew and 

staff deploying one towed stereo-video 
b calculations based on 10 stereo-BRUVs and one towed stereo-video 
c
 stereo-BRUVS = 3staff * 5.5days * 8h /day; towed stereo-video = 2staff * 8.5days * 8h /day 

The lower survey cost associated with the use of TV compared to the BV provides additional 

support for considering this method for marine spatial management purposes. The level of 

expertise and time required for collecting and processing data from the two methods is 

virtually identical, the major difference being costs associated with vessel hire and the 

 stereo-BRUV Towed stereo-video 

General logistics   

Vessel costs ($AU/day) 2000
a
 350

a
 

Camera system costs($AU/day) 2000
b
 400

b
 

   

Pre-Field   

Equipment calibration and processing 

(staff hours) 
8 3 

   

In-Field   

Data collection (total) 132
c
 136

c
 

Video download 2 0.5 

   

Post-field   

Video processing total 1 h video recording= 3 h 

processing 

1 h video recording= 3 h 

processing 
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purchase of camera systems. The initial outlay of purchasing equipment is also five times 

greater when using BV, though repeated use of the same cameras would reduce the long 

term differences. The daily costs associated with needing a larger vessel and extra crew will, 

however, become more relevant on longer field trips. 

5.6 Conclusions 

Research programs must choose survey techniques and indicators applicable to their research 

questions (Cappo et al., 2004; Watson et al., 2005). While stereo-BRUVs are a well-

established method for surveying fish assemblages, their usefulness for species distribution 

modelling should be revised due to the biases that may be introduced with respect to habitat 

associations of fish. Other methods for surveying fine-scale species-habitat associations 

typically involve divers (stereo-DOVs, underwater visual census) and are limited by diving 

depths and times. Video from towed or autonomous underwater vehicles are, however, less 

constrained by depth and could become an effective method that combines the benefits of a 

remote video and a fine spatial scale observations of species-habitat associations. Our study 

provides evidence that towed stereo-video is a robust, non-intrusive, low cost method for 

fine-scale data collection that can be useful for spatial ecological modelling. In combination 

with precise habitat data from remote sensing systems, developments in towed video 

methods can map demersal species distributions and may allow rapid identification of 

sensitive or ecologically important areas which are important for marine conservation.  
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5.7 Supplementary material 

 

 

Supplement 5.7.1 Picture of the towed stereo-video system ready for deployment. 
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Chapter 6 General Discussion 

6.1 Summary of findings 

This thesis critically assesses how incorporating individual body length measurements into 

species distribution models can be used to examine the species-environment relationships of 

demersal fishes at different life stages. This is a useful approach for effective fisheries and 

marine spatial management in the face of global environmental change. In this general 

discussion I summarise my main findings and evaluate the strengths and limitations of the 

approach I tested and its usefulness for marine spatial management (Figure 6.1). 

 

Figure 6.1 Flow diagram outlining the important findings and major conclusions from the thesis. 

My research provides further evidence that the environmental niche requirements of 

conspecific individuals of many demersal fish species can change as the individual grows. 

Understanding the habitat requirements of fishes of different sizes and at different life stages 

will greatly improve our knowledge of the dynamics of demersal fish communities and the 

habitats they rely on. The statistical approach I have used can help fisheries and conservation 

managers identify and manage essential fish habitat ensuring the connectivity of populations 

across a mosaic of habitats. 
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My results indicate that community structure and assemblage composition of demersal fishes 

in south-western Australia is closely associated with features of benthic habitat complexity 

and biological cover (chapter 2). This close association is  not surprising as many fish 

communities in this SST hotspot region are limited range endemic species (Fox & Beckley, 

2005). Species that are habitat specialists are inherently more susceptible to change in habitat 

quality and cover as a result of climate change or other anthropogenic stressors, such as 

sedimentation and eutrophication (Munday, 2004). As result of this biogeographic scale 

analyses, I was able to identify key indicator species characteristic of individual 

assemblages, which I later use as model species in the following chapters. Ecological or 

fisheries indicator species are commonly used to monitor overall ecosystem health (Garcia et 

al., 2000) when monitoring of the whole assemblages is not feasible (Smale et al., 2011; 

D’Amen et al., 2015). For demersal fish in Western Australia, most of the indicators were 

derived to monitor the effects of fishing and fisheries management of targeted species 

(Smale et al., 2011). However, to ensure overall ecosystem health, it is essential to recognise 

the importance of non-targeted species as indicators, particularly those that could be under 

immediate threat of climate associated changes, such as limited range endemic species. The 

key indicator species identified in my thesis could be used by managers and spatial 

ecologists as surrogates for assessing the health and stress responses of the assemblages they 

represent and for identifying significant changes in existing patterns of species richness and 

assemblage composition in the south-western Australia. 

My results indicate that both ecological indicator fish species (chapter 3) and fisheries 

indicator species (chapter 4) undergo changes in their ecological niche requirements which 

reflects on the choice of habitat throughout their life. This is particularly relevant for species 

that are dependent on a specific habitat for juvenile recruitment (Jones et al., 2004) where the 

spatial distribution patterns of adult populations are dependent on the distribution and the 

productivity of nursery areas, where areas close to nurseries replenish more isolated areas 

(Huijbers et al., 2013). Ontogenetic habitat shifts are identified as one of the mechanisms 

that connect fish populations between nursery areas and hotspots of animal abundance within 

a habitat mosaic (Huijbers et al., 2013; Nagelkerken et al., 2015). Inability to move between 

habitats is likely to adversely impact survivorship. Furthermore, identifying key areas of the 

seascape that are crucial for different life-history stages of the same species or for multiple 

species (i.e. spawning grounds, fisheries refugia or nursery areas) may preserve critical 

spawning stock biomass of exploited species and result in lower losses and higher survival of 

vulnerable life stages (Dugan & Davis, 1993). Preserving functional seascape connectivity 

patterns between nursery areas and adult populations can enhance the abundance of target 
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species as well as other fish species relying on healthy ecosystem functioning (Olds et al., 

2014) which in turn can support the overarching goal of preserving biodiversity. 

As a fisheries management tool, the ability to monitor juvenile recruitment variability in 

areas of critical juvenile habitat using GAMs and individual body length would allow for 

early predictions (up to eight years in case of Glaucosoma hebraicum) of future strength of 

cohorts to be made before they enter the fishery (Lewis et al., 2012). Furthermore, by 

creating temporary closures of adult breeding grounds during spawning season, it is possible 

to enhance the reproductive dynamics of the entire population of the target species. For 

example, protecting the crucial areas of seascape for large sexually mature females can 

further enhance the abundance and biomass of depleted stocks (Polacheck, 1990; Denny et 

al., 2003). 

6.2 Implications for management and conservation 

Management and conservation efforts are often constrained by economic considerations, 

which raise questions for decisions about where scarce conservation and fisheries 

management resources should be directed, and what areas are most worthy of protection 

(Ferrier, 2002). Similarly, the decision about where to locate marine reserves and closed 

areas to maximise biodiversity conservation and sustainable fisheries management outcomes 

is challenging, as designated areas may not encompass the essential habitat requirements of 

different life stages of a range of targeted and ecologically important fishes (Schmiing et al., 

2013). The spatial hotspots that I have identified can address this knowledge gap by spatially 

establishing the location of new benthic areas that are important for numerous species and/or 

for different life stages for a wide variety of species (e.g. fish nurseries). The very same 

approach could be used to identify entire areas that may not require future in-depth surveys, 

thus optimising limited management resources. It is well recognised that to optimise the 

design and placement of reserves (e.g. Possingham et al. 2000) and closed areas it is 

important to take into account patterns of population connectivity across mosaic of habitats 

(e.g. Nagelkerken et al. 2015; Olds et al. 2016) for multiple species. Hotspot areas should be 

considered in zoning schemes and become priority areas for marine spatial monitoring and 

management (Schmiing et al., 2013). In addition, any future re-zoning efforts should 

consider including hotspot areas to increase their efficiency thus reducing the risk of 

compromising effective conservation of marine biodiversity (Stewart et al., 2003). 
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6.3 Alternative survey methods 

Despite stereo-BRUVs being a well-established survey method for surveying fish 

assemblages, I have demonstrated in chapter 5 that stereo-BRUVs data may mask the fine 

scale species-environment interactions that could be crucial for spatial ecology of less 

mobile species. I have also demonstrated that it is possible to use a towed stereo-video 

method for a rapid survey of low complexity marine seascapes. Towed stereo-video has 

similar advantages to stereo-BRUVs in that it is non-destructive and it can sample across a 

broad range of habitats and depths, but can record fine spatial scale observations of species-

habitat associations. The low cost associated with data collection using the towed video in 

combination with improved model performance provides evidence that this method can be 

useful for mapping demersal fish species distributions and may allow rapid identification of 

sensitive or ecologically important areas. My findings highlight the usefulness of this 

alternative survey method which has the potential to enhanced marine conservation and 

management efforts. 

6.4 Limitation from this thesis 

The strategic choice of Geographe Bay for data collection to compare the performance of 

models based on stereo-BRUVs and towed stereo-video (chapter 5) was driven by logistics 

of funding, vessel availability and local weather conditions. The bay is characterised by an 

extremely marginal environmental gradient, making this area a challenging place for 

comparison of the applied methods. I believe that if sampling was performed in an area with 

more distinct differences between various habitat patches, the modelling results could have 

been even more pronounced for the two data collection methods. 

The modelling approaches that I have utilised throughout my thesis are currently lacking the 

ability to implement zero inflated GAMs with negative binomial error distribution, or a two-

stage (hurdle) GAMs with gamma error distribution in R statistical software. This limitation 

has consequences for models developed for overfished or rare species where a high 

proportion of zeroes in datasets could result in poor model fits and consequentially low 

explanatory power. At this stage, only Generalised Linear Models (GLMs) have the capacity 

to predict the response of various species to environmental predictors utilising the 

aforementioned types of error distributions. However, as most of the biological responses in 

the marine environment are not linear (Leathwick et al., 2006), GAMs are more appealing 

method for describing these relationships. GAMs have become widely used in ecological, 

spatial and management oriented marine studies (Pittman et al., 2007; Valavanis et al., 2008; 



 

100 

Schmiing et al., 2013). In addition, my results for comparison between the biomass and 

abundance models (chapter 4) indicated that the biomass model fits had notably higher 

explanatory power in comparison to the abundance models, thus identifying this modelling 

approach as particularly beneficial for models developed for overfished and/or rare species. 

At this stage, only one package compatible with R statistical software is still under 

development that will allow fitting zero inflated GAMs with negative binomial error 

distribution that could provide a potential solution for modelling non-linear relationships 

between rarely recorded marine species and their environment (VGAM; Yee 2015). In the 

meantime, I suggest using biomass and abundance models as complementary to each other 

such as has been done in this thesis. Such approach could be extremely useful for spatial 

management when mapping distribution patterns in fish diversity and for understanding of 

population dynamics of endangered species.  

The multiple species hotpots that I have identified in chapters 3 and 4 for adults/large size 

individuals and juveniles/small size fish, are perhaps quite small-sized and not always 

applicable to all modelled species. My intention was to demonstrate that the technique for 

size-specific hotspot extraction could be applied to any species with varying habitat 

requirements and biological characteristics. I believe that when applied to fish species with 

similar habitat requirements and demographic processes this approach could be highly 

beneficial for identifying the hotspot areas for different life-history stages of multiple 

species. 

6.5 New research avenues  

Towed stereo-video systems can capture accurate and precise measurements of fish length 

and provide measurements of sampling area. Most importantly it can continuously capture 

the fine scale spatial data over seascape transition zones (Spencer et al., 2005) which is a 

major advantage in comparison to the baited systems. The ability to combine the fine-scale 

density and/or abundance estimates of surveyed species with precise habitat data from 

remote sensing systems can help to rapidly map demersal fish distributions across large areas 

of seascape and allow identification of ecologically important areas which are important for 

marine conservation. However, a current major limitation of the towed stereo-video systems 

is associated with movement of the system through the water column which can affect 

quality of the video image and deter or attract certain fish species (McIlwain et al., 2011; 

Warnock et al., 2016). Future developments in the towed systems should aim to miniaturize 

and stabilise the camera system in order to reduce its effects and improve the recoded 

imagery. 
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To effectively deal with rapid global change, conservation managers need to utilise 

multiscalar statistical analysis tools for compilation of integrated local, regional, and global 

datasets to produce standardized, relevant, and interpretable outputs (Edgar et al., 2016). 

Novel methods for conducting large scale underwater surveys are being developed based on 

availability of autonomous and remotely operated sampling platforms (e.g. gliders, AUVs, 

ROVs), which could provide the necessary hydroacoustic, biological cover and fish density 

datasets without limitations posed by commonly used methods such as stereo-BRUVs (Seiler 

et al., 2012). These large, complex datasets necessitate concurrent development of 

algorithms and software to efficiently extract useful information that quantify species 

patterns and improve our understanding of consequences of associated environmental and 

socioeconomic threats to biodiversity and individual species (Cooke et al., 2016). 

6.6 Thesis conclusions  

Robust predictive modelling can improve our knowledge of the spatial ecology of demersal 

fishes at various life-history stages, which can directly enhance management and 

conservation efforts of regions and demersal fish communities affected by the climate 

change, fisheries and other anthropogenic impacts. Temperate and subtropical West 

Australian demersal fish assemblages are dominated by limited range endemic species which 

are closely associated with biotic and abiotic environmental factors (such as canopy forming 

seaweeds and structural complexity of habitat at varying spatial scales). However, limited 

ranges of species are also recognised as indicators of vulnerability to climate driven 

extinction (Bender et al., 2013; Harvey et al., 2013). Most recent studies in this region 

demonstrate northern range contraction of kelp-dominated temperate reefs, which is 

currently resulting in ecosystem shifts to marine communities associated with tropical waters 

(Bennett et al., 2015; Wernberg et al., 2016). Together, these changes can cause ecological 

phase shifts between the alternative macroalgae or coral dominated communities and bear 

dire consequences to the endemics reach demersal fish communities. Understanding of 

hierarchy and scale of influence of various processes, while paying special attention to 

demographic processes at species or community levels, can help successful management of 

these vulnerable assemblages and can be a key to a deeper understanding of marine ecology. 

In addition, higher survival of vulnerable life stages of targeted and non-targeted species can 

enhance fishery yields, promote healthy ecosystem functioning and preserve worldwide 

decreasing biodiversity.  
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