102 research outputs found

    Protein Dynamical Transition in Terahertz Dielectric Response

    Full text link
    The 200 K protein dynamical transition is observed for the first time in the teraherz dielectric response. The complex dielectric permittivity ϵ\epsilon = ϵ\epsilon' + iϵ\epsilon" is determined in the 0.2 - 2.0 THz and 80-294 K ranges. ϵ\epsilon" has a linear temperature dependence up to 200 K then sharply increases. The low temperature linear dependence in ϵ\epsilon" indicates anharmonicity for temperatures 80 K < T < 180 K, challenging the assumed harmonicity below 200K. The temperature dependence is consistent with beta relaxation response and shows the protein motions involved in the dynamical transition extend to subpicosecond time scales

    Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment)

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Radioanalytical and Nuclear Chemistry 273 (2007): 383-393, doi:10.1007/s10967-007-6898-4.A reference material designed for the determination of anthropogenic and natural radionuclides in sediment, IAEA-384 (Fangataufa Lagoon sediment), is described and the results of certification are presented. The material has been certified for 8 radionuclides (40K, 60Co, 155Eu, 230Th, 238U, 238Pu, 239+240Pu and 241Am). Information values are given for 12 radionuclides (90Sr, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 232Th, 234U, 235U, 239Pu, 240Pu and 241Pu). Less reported radionuclides include 228Th, 236U, 239Np and 242Pu. The reference material may be used for quality management of radioanalytical laboratories engaged in the analysis of radionuclides in the environment, as well as for the development and validation of analytical methods and for training purposes. The material is available from IAEA in 100 g units

    Combined Experimental and Computational Studies on the Nature of Aromatic C−H Activation by Octahedral Ruthenium(II) Complexes: Evidence for σ-Bond Metathesis from Hammett Studies

    Full text link
    Octahedral ruthenium complexes of the type TpRu(L)(NCMe)R [Tp = hydridotris(pyrazolyl)borate; R = alkyl or aryl; L = CO or PMe3] have been shown previously to initiate the C-H activation of aromatic substrates. In order to probe the nature of the C-H activation step, reaction rates have been theoretically obtained for the conversion of TpRu(L)(η2-C, C-C6H5X)Me to TpRu(L)(P-C6H4X) and CH4 where X is varied among Br, Cl, CN, F, H, NH2, NO 2, and OMe. A linear Hammett correlation is calculated with a positive p value of 2.6 for L = CO and 3.2 for L = PMe3. Calculated kinetic data for the aromatic C-H activations indicate that an electrophilic aromatic substitution mechanism is unlikely. While experiments cannot fully replicate the entire range of calculated Hammett plots, reactivity trends are consistent with the calculations that suggest activation barriers to overall metal-mediated arene C-H bond cleavage are reduced by the presence of electron-withdrawing groups in the position para to the site of activation. Previous mechanistic studies, as well as the structure and imaginary vibrational modes of the present transition states, validate that the C-H activation for this family of TpRu complexes occurs through a σ-bond metathesis-type pathway. © 2007 American Chemical Society
    corecore