50 research outputs found

    A survey of nulling pulsars using the Giant Meterwave Radio Telescope

    Full text link
    Several pulsars show sudden cessation of pulsed emission, which is known as pulsar nulling. In this paper, the nulling behaviour of 15 pulsars is presented. The nulling fractions of these pulsars, along with the degree of reduction in the pulse energy during the null phase, are reported for these pulsars. A quasi-periodic null-burst pattern is reported for PSR J1738-2330. The distributions of lengths of the null and the burst phases as well as the typical nulling time scales are estimated for eight strong pulsars. The nulling pattern of four pulsars with similar nulling fraction are found to be different from each other, suggesting that the fraction of null pulses does not quantify the nulling behaviour of a pulsar in full detail. Analysis of these distributions also indicate that while the null and the burst pulses occur in groups, the underlying distribution of the interval between a transition from the null to the burst phase and vice verse appears to be similar to that of a stochastic Poisson point process.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach

    Get PDF
    We report the detection of 72 new pulses from the repeating fast radio burst FRB 121102 in Breakthrough Listen C-band (4-8 GHz) observations at the Green Bank Telescope. The new pulses were found with a convolutional neural network in data taken on August 26, 2017, where 21 bursts have been previously detected. Our technique combines neural network detection with dedispersion verification. For the current application we demonstrate its advantage over a traditional brute-force dedis- persion algorithm in terms of higher sensitivity, lower false positive rates, and faster computational speed. Together with the 21 previously reported pulses, this observa- tion marks the highest number of FRB 121102 pulses from a single observation, total- ing 93 pulses in five hours, including 45 pulses within the first 30 minutes. The number of data points reveal trends in pulse fluence, pulse detection rate, and pulse frequency structure. We introduce a new periodicity search technique, based on the Rayleigh test, to analyze the time of arrivals, with which we exclude with 99% confidence pe- riodicity in time of arrivals with periods larger than 5.1 times the model-dependent time-stamp uncertainty. In particular, we rule out constant periods >10 ms in the barycentric arrival times, though intrinsic periodicity in the time of emission remains plausible.Comment: 32 pages, 10 figure

    On Detecting Interstellar Scintillation in Narrowband Radio SETI

    Full text link
    To date, the search for radio technosignatures has focused on sky location as a primary discriminant between technosignature candidates and anthropogenic radio frequency interference (RFI). In this work, we investigate the possibility of searching for technosignatures by identifying the presence and nature of intensity scintillations arising from the turbulent, ionized plasma of the interstellar medium (ISM). Past works have detailed how interstellar scattering can both enhance and diminish the detectability of narrowband radio signals. We use the NE2001 Galactic free electron density model to estimate scintillation timescales to which narrowband signal searches would be sensitive, and discuss ways in which we might practically detect strong intensity scintillations in detected signals. We further analyze the RFI environment of the Robert C. Byrd Green Bank Telescope (GBT) with the proposed methodology and comment on the feasibility of using scintillation as a filter for technosignature candidates.Comment: 17 pages, 8 figures, published by Ap

    The Breakthrough Listen Search for Intelligent Life: A 3.95-8.00 GHz Search for Radio Technosignatures in the Restricted Earth Transit Zone

    Full text link
    We report on a search for artificial narrowband signals of 20 stars within the restricted Earth Transit Zone as a part of the ten-year Breakthrough Listen (BL) search for extraterrestrial intelligence. The restricted Earth Transit Zone is the region of the sky from which an observer would see the Earth transit the Sun with an impact parameter of less than 0.5. This region of the sky is geometrically unique, providing a potential way for an extraterrestrial intelligence to discover the Solar System. The targets were nearby (7-143 pc) and the search covered an electromagnetic frequency range of 3.95-8.00 GHz. We used the Robert C. Byrd Green Bank Telescope to perform these observations with the standard BL data recorder. We searched these data for artificial narrowband (∼\simHz) signals with Doppler drift rates of ±20\pm 20 Hz s−1^{-1}. We found one set of potential candidate signals on the target HIP 109656 which was then found to be consistent with known properties of anthropogenic radio frequency interference. We find no evidence for radio technosignatures from extraterrestrial intelligence in our observations. The observing campaign achieved a minimum detectable flux which would have allowed detections of emissions that were 10−310^{-3} to 0.880.88 times as powerful as the signaling capability of the Arecibo radar transmitter, for the nearest and furthest stars respectively. We conclude that at least 8%8\% of the systems in the restricted Earth Transit Zone within 150 pc do not possess the type of transmitters searched in this survey. To our knowledge, this is the first targeted search for extraterrestrial intelligence of the restricted Earth Transit Zone. All data used in this paper are publicly available via the Breakthrough Listen Public Data Archive (http://seti.berkeley.edu/bldr2).Comment: 17 pages, 8 figures, submitted to Ap
    corecore