4 research outputs found

    Cryo-Electron Tomography Reveals the Complex Ultrastructural Organization of Multicellular Filamentous Chloroflexota (Chloroflexi) Bacteria

    No full text
    The cell biology of Chloroflexota is poorly studied. We applied cryo-focused ion beam milling and cryo-electron tomography to study the ultrastructural organization of thermophilic Roseiflexus castenholzii and Chloroflexus aggregans, and mesophilic “Ca. Viridilinea mediisalina.” These species represent the three main lineages within a group of multicellular filamentous anoxygenic phototrophic Chloroflexota bacteria belonging to the Chloroflexales order. We found surprising structural complexity in the Chloroflexales. As with filamentous cyanobacteria, cells of C. aggregans and “Ca. Viridilinea mediisalina” share the outer membrane-like layers of their intricate multilayer cell envelope. Additionally, cells of R. castenholzii and “Ca. Viridilinea mediisalina” are connected by septal channels that resemble cyanobacterial septal junctions. All three strains possess long pili anchored close to cell-to-cell junctions, a morphological feature comparable to that observed in cyanobacteria. The cytoplasm of the Chloroflexales bacteria is crowded with intracellular organelles such as different types of storage granules, membrane vesicles, chlorosomes, gas vesicles, chemoreceptor-like arrays, and cytoplasmic filaments. We observed a higher level of complexity in the mesophilic strain compared to the thermophilic strains with regards to the composition of intracellular bodies and the organization of the cell envelope. The ultrastructural details that we describe in these Chloroflexales bacteria will motivate further cell biological studies, given that the function and evolution of the many discovered morphological traits remain enigmatic in this diverse and widespread bacterial group

    Draft genome sequences of ‘Candidatus Chloroploca asiatica’ and ‘Candidatus Viridilinea mediisalina’, candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications

    No full text
    Abstract ‘Candidatus Chloroploca asiatica’ B7–9 and ‘Candidatus Viridilinea mediisalina’ Kir15-3F are mesophilic filamentous anoxygenic phototrophic bacteria from alkaline aquatic environments. Both bacteria became available in the last few years and only in stable enrichment culture. In this study, we report the draft genomic sequences of ‘Ca. Chloroploca asiatica’ B7–9 and ‘Ca. Viridilinea mediisalina’ Kir15-3F, which were assembled from metagenomes of their cultures with a fold coverage 86.3× and 163.8×, respectively. The B7–9 (5.8 Mb) and the Kir15-3F (5.6 Mb) draft genome harbors 4818 and 4595 predicted protein-coding genes, respectively. In this article, we analyzed the phylogeny of representatives of the Chloroflexineae suborder in view of the appearance of new genomic data. These data were used for the revision of earlier published group-specific conserved signature indels and for searching for novel signatures for taxons in the Chloroflexineae suborder

    Cultivation of a vampire: ‘ Candidatus Absconditicoccus praedator’

    No full text
    Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named ‘Ca. Absconditicoccus praedator’ M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. ‘Ca. Absconditicoccus praedator’ is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner–Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, ‘Ca. Absconditicoccus praedator’ is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) ‘Ca. Vampirococcus lugosii’, which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.ISSN:1462-2912ISSN:1462-292
    corecore