1,034 research outputs found

    Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Get PDF
    Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT) knockout (KO) and heterozygous (HET) mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1). Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT-HET dams bred with DAT-HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats' sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT). During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT) and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH) and RO-5203648, a trace amine-associated receptor 1 (TAAR1) partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2), serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research

    Beyond cAMP: The Regulation of Akt and GSK3 by Dopamine Receptors

    Get PDF
    Brain dopamine receptors have been preferred targets for numerous pharmacological compounds developed for the treatment of various neuropsychiatric disorders. Recent discovery that D2 dopamine receptors, in addition to cAMP pathways, can engage also in Akt/GSK3 signaling cascade provided a new framework to understand intracellular signaling mechanisms involved in dopamine-related behaviors and pathologies. Here we review a recent progress in understanding the role of Akt, GSK3, and related signaling molecules in dopamine receptor signaling and functions. Particularly, we focus on the molecular mechanisms involved, interacting partners, role of these signaling events in the action of antipsychotics, psychostimulants, and antidepressants as well as involvement in pathophysiology of schizophrenia, bipolar disorder, and Parkinson’s disease. Further understanding of the role of Akt/GSK3 signaling in dopamine receptor functions could provide novel targets for pharmacological interventions in dopamine-related disorders

    TAAR1-dependent effects of apomorphine in mice.

    Get PDF
    G protein-coupled trace amine-associated receptor 1 (TAAR1) is expressed in several brain regions and modulates dopaminergic activity partially by affecting D2 dopamine receptor function. In vitro , the nonselective dopamine agonist apomorphine can activate mouse and rat TAAR1. The aim of the present study was to evaluate whether apomorphine activity at the rodent TAAR1 observed in in vitro studies contributes to its behavioral manifestation in mice. For this purpose, we compared the behavioral effects of a wide range of apomorphine doses in wild type (WT) and TAAR1 knockout (TAAR1-KO) mice. Apomorphine-induced locomotor responses (0.01–4.0 mg/kg) were tested in locomotor activity boxes, and stereotypic behavior at 5 mg/kg was tested by ethological methods. A gnawing test was used to analyze the effects of the highest dose of apomorphine (10 mg/kg). No statistically significant differences were observed between TAAR1-KO and WT mice following inhibitory pre-synaptic low doses of apomorphine. At higher doses (2.0–5.0 mg/kg), apomorphine-induced climbing behavior was significantly reduced in TAAR1 mutants relative to WT controls. Moreover, the lack of TAAR1 receptors decreased certain types of stereotypies (as reflected in by measures of the global stereotypy score, licking but not sniffing or gnawing) that were induced by high doses of apomorphine. These data indicate that apomorphine activity at TAAR1 contributes to some behavioral manifestations, particularly climbing, in rodents following high doses of this drug. The contribution of TAAR1 to apomorphine-induced climbing in rodents should be considered when apomorphine is used as a screening tool in the search for potential antipsychotics

    Activation of the spinal and brainstem locomotor networks during free treadmill stepping in rats lacking dopamine transporter

    Get PDF
    Dopamine is extremely important for the multiple functions of the brain and spinal cord including locomotor behavior. Extracellular dopamine levels are controlled by the membrane dopamine transporter (DAT), and animals lacking DAT (DAT-KO) are characterized by hyperdopaminergia and several alterations of locomotion including hyperactivity. Neuronal mechanisms of such altered locomotor behavior are still not fully understood. We believe that in hyperdopaminergic animals both the spinal and brain neuronal networks involved in locomotion are modified. Using the c-fos technique, we studied activated neuronal networks of the spinal cord and two brainstem structures related to locomotor control and being under the strong dopaminergic influence, the cuneiform nucleus (CnF) and ventrolateral periaqueductal gray (VLPAG), in wild-type (DAT-WT) and DAT-KO rats. In the spinal cord, most c-fos-positive cells were located in the dorsal laminae II-IV and in the central gray matter (laminae V-VI). No differences were revealed for the central areas. As for the dorsal areas, in the DAT-WT group, labeled cells mostly occupied the lateral region, whereas, in the DAT-KO group, c-fos-positive cells were observed in both medial and lateral regions in some animals or in the medial regions in some animals. In the brainstem of the DAT-WT group, approximately the same number of labeled cells were found in the CnF and VLPAG, but in the DAT-KO group, the VLPAG contained a significantly smaller number of c-fos-positive cells compared to the CnF. Thereby, our work indicates an imbalance in the sensorimotor networks located within the dorsal horns of the spinal cord as well as a disbalance in the activity of brainstem networks in the DAT-deficient animals

    A DNA-guided Argonaute Protein Functions in DNA Replication in Thermus thermophilus [preprint]

    Get PDF
    Argonaute proteins use nucleic acid guides to protect organisms against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. TtAgo binds small DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. T. thermophilus deploys a single type II topoisomerase, gyrase. When gyrase is inhibited, T. thermophilus relies on TtAgo to complete replication of its circular genome; loss of both gyrase and TtAgo activity produces long filaments that fail to separate into individual bacteria. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes made by DNA replication

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Cross-hemispheric dopamine projections have functional significance

    Get PDF
    Decades of research have described dopamine’s importance in reward-seeking behavior and motor control. Although numerous investigations have focused on dopamine’s mechanisms in modulating behavior, the long-standing belief that dopamine neurons project solely unilaterally has limited the exploration of interhemispheric dopamine signaling. Here we resolve disparate descriptions of unilateral vs. bilateral projections by reporting that dopamine neurons can release dopamine in the contralateral hemisphere. Using voltammetry in awake and anesthetized rats, we reveal an unprecedented synchrony of dopamine fluctuations between hemispheres. Via stimulation with amphetamine, we demonstrate functional cross-hemispheric projections in a hemiparkinsonian model. This previously undescribed capacity for interhemispheric dopamine signaling can precipitate new areas of inquiry. Future work may exploit properties of bilateral dopamine release to improve treatments for Parkinson’s disease, including deep brain stimulation

    Epidemiological analysis of the incidence of urolithiasis among the adult population of the Republic of Tatarstan in 2012−2021

    Get PDF
    The aim of this work was to evaluate the dynamics of urolithiasis morbidity in the Republic of Tatarstan and to identify the territories endemic for this pathology.Цель работы − оценка динамики заболеваемости мочекаменной болезнью в Республике Татарстан и выявление территорий, эндемичных по этой патологии
    corecore