9 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Cingulum-Callosal White-Matter Microstructure Associated with Emotional Dysregulation in Children: A Diffusion Tensor Imaging Study

    No full text
    © 2020 The Author(s) Emotional dysregulation symptoms in youth frequently predispose individuals to increased risk for mood disorders and other mental health difficulties. These symptoms are also known as a behavioral risk marker in predicting pediatric mood disorders. The underlying neural mechanism of emotional dysregulation, however, remains unclear. This study used the diffusion tensor imaging (DTI) technique to identify anatomically specific variation in white-matter microstructure that is associated with pediatric emotional dysregulation severity. Thirty-two children (mean age 9.53 years) with varying levels of emotional dysregulation symptoms were recruited by the Massachusetts General Hospital and underwent the DTI scans at Massachusetts Institute of Technology. Emotional dysregulation severity was measured by the empirically-derived Child Behavior Checklist Emotional Dysregulation Profile that includes the Attention, Aggression, and Anxiety/Depression subscales. Whole-brain voxel-wise regression tests revealed significantly increased radial diffusivity (RD) and decreased fractional anisotropy (FA) in the cingulum-callosal regions linked to greater emotional dysregulation in the children. The results suggest that microstructural differences in cingulum-callosal white-matter pathways may manifest as a neurodevelopmental vulnerability for pediatric mood disorders as implicated in the clinical phenotype of pediatric emotional dysregulation. These findings may offer clinically and biologically relevant neural targets for early identification and prevention efforts for pediatric mood disorders

    DNA methylation networks underlying mammalian traits

    No full text
    Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore