2 research outputs found

    Prognostic biomarker soluble ST2 exhibits diurnal variation in chronic heart failure patients

    Get PDF
    Aim: Soluble suppression of tumorigenicity-2 (sST2) is a strong prognostic biomarker in heart failure. The emerging understanding of circadian biology in cardiovascular disease may lead to novel applications in prognosis and diagnosis and may provide insight into mechanistic aspects of the disease–biomarker interaction. So far, it is unknown whether sST2 exhibits a diurnal rhythm. Repeated measurements of sST2 may aid in clinical decision making. The goal of this study was to investigate whether sST2 exhibits diurnal variation in patients with heart failure with reduced ejection fraction (HFrEF) and in control subjects, thereby enhancing its diagnostic and prognostic values. Methods and results: The study comprised 32 subjects: 16 HFrEF patients and 16 controls. Blood was collected at seven subsequent time points during a 24 h time period. sST2, N-terminal pro-B-type natriuretic peptide (NT-proBNP), melatonin, and cortisol were measured from serum. Peak values of sST2 clustered at daytime (modal value: 5 p.m.) in 87.6% of all subjects (81.3% of patients, P = 0.021; 93.8% of controls, P = 0.001), and minimum concentrations at night-time (modal value: 5 a.m.) in 84.4% (87.5% of patients, P = 0.004 81.3% of controls, P = 0.021). A cosinor analysis of mean normalized sST2 values revealed significant cosine shaped 24 h oscillations of patients (P = 0.026) and controls (P = 0.037). NT-proBNP in contrast did not show a diurnal rhythm, while melatonin and cortisol patterns were intact in all subjects. Conclusions: sST2 exhibits a diurnal rhythm with lower values in the morning than in the late afternoon. This new insight could lead to refinement of its diagnostic and prognostic values through specified and consistent sampling times with repeated measurements. For example, by measuring sST2 during the afternoon, when levels are at their highest, false negatives on prognosis prediction could be avoided

    The role of melatonin treatment in chronic kidney disease

    No full text
    The pineal hormone melatonin plays a major role in circadian sleep-wake rhythm. Patients with Chronic Kidney Disease (CKD), especially those who are on hemodialysis, frequently suffer from sleep disturbances. In this review an overview is given of the classification of stages of chronic kidney disease, followed by a presentation of the circadian rhythm disorders in renal disease involving sleep disturbances in relation to melatonin deficiency. The therapeutic benefit of melatonin treatment in sleep disorders related to chronic kidney disease including the controlled trials solving this topic, is described. Furthermore, the beneficial effect of melatonin on blood pressure alterations in CKD states and the protection of melatonin in oxidative stress and inflammation in renal disorders are explored. Finally a hypothetic model is described for the relation between circadian rhythm disorders and CKD
    corecore