121 research outputs found

    Allergen bronchoprovocation test:an important research tool supporting precision medicine

    Get PDF
    PURPOSE OF REVIEW: Allergen bronchoprovocation test (ABT) has been used to study asthma pathophysiology and as a disease-modelling tool to assess the properties and efficacy of new asthma drugs. In view of the complexity and heterogeneity of asthma, which has driven the definition of several phenotypes and endotypes, we aim to discuss the role of ABT in the era of precision medicine and provide guidance for clinicians how to interpret and use available data to understand the implications for the benefits of asthma treatment. RECENT FINDINGS: In this review, we summarize background knowledge and applications of ABT and provide an update with recent publications on this topic. In the past years, several studies have been published on ABT in combination with non-invasive and invasive airway samplings and innovative detection techniques allowing to study several inflammatory mechanisms linked to Th2-pathway and allergen-induced pathophysiology throughout the airways. SUMMARY: ABT is a valuable research tool, which has strongly contributed to precision medicine by helping to define allergen-triggered key inflammatory pathways and airway pathophysiology, and thus helped to shape our understanding of allergen-driven asthma phenotypes and endotypes. In addition, ABT has been instrumental to assess the interactions and effects of new-targeted asthma treatments along these pathways

    A genealogical study of Alzheimer disease in the Saguenay region of Quebec

    Get PDF
    We performed an analysis of inbreeding and kinship among the ascending genealogies of 205 autopsy-confirmed Alzheimer disease (AD) subjects recruited in the Saguenay area of Québec. We hypothesized that if some traits pertaining to the disease were determined by inherited factors, and if the corresponding genes were not too frequent in the population, it might be possible to detect some clusters of patients related to common ancestors and presenting a level of kinship and/or inbreeding higher than is observed in the unaffected population of the same age. In view of the heterogeneity of the disease, we also verified if some of the factors investigated could be associated more specifically with subsets of cases based on age of onset and on apolipoprotein E (APOE) genotype. Results were compared with those obtained on 205 controls matched for gender, place and year of birth. We found that late-onset AD cases with an APOE-epsilon 4 were significantly more inbred than controls and that this increase was explained by the high level of inbreeding of a few cases whose parents were related at the first-cousin level. This could possibly indicate the implication of a recessive element in a small subset of AD cases in the Saguenay population. We also found that late-onset epsilon 4+ cases were significantly more closely related among themselves than with controls. This increase in kinship may be attributable to the presence of the epsilon 4 allele or to some other unidentified genetic factor possibly acting in conjunction with APOE-epsilon 4

    The Effect of PPAR Agonists on the Migration of Mature and Immature Eosinophils

    Get PDF
    PPARγ agonists can either enhance or inhibit eosinophil migration, which is a sum of directional migration (chemotaxis) and random cell movement (chemokinesis). To date, the effects of PPAR agonists on chemokinesis have not been examined. This study investigates the effects of PPARα, δ, and γ agonists on eosinophil migration and chemokinesis. Eosinophils purified from blood of atopic donors were preincubated with rosiglitazone (PPARγ agonist), GW9578 (PPARα agonist), GW501516 (PPARδ agonist), or diluent. The effects of PPAR agonists were examined on eosinophil chemokinesis, eotaxin-induced migration of eosinophils, and migration of IL-5Rα+ CD34+ cells. Expressions of CCR3, phospho-p38, phospho-ERK, and calcium release were also measured in eosinophils after rosiglitazone treatment. Low concentrations of rosiglitazone, but not GW9578 or GW501516, increased chemokinesis of eosinophils (P=0.0038), and SDF-1α-induced migration of immature eosinophils (P=0.0538). Rosiglitazone had an effect on eosinophil calcium flux but had no effect on expression of CCR3 or phosphorylation of p38 or ERK. In contrast, high concentrations of rosiglitazone inhibited eosinophil migration (P=0.0042). The effect of rosiglitazone on eosinophil migration and chemokinesis appears to be through modification of calcium signaling, which alludes to a novel PPAR-mediated mechanism to modulate eosinophil function

    Effects of Asm-024, A Modulator of Acetylcholine Receptor Function, On Airway Responsiveness and Allergen-Induced Responses in Patients with Mild Asthma

    Get PDF
    OBJECTIVES: To evaluate the safety, tolerability and clinical activity of ASM-024, a new cholinergic compound with dual nicotinic and muscarinic activity, in mild allergic asthma

    Allergen bronchoprovocation: correlation between FEV1 maximal percent fall and area under the FEV1 curve and impact of allergen on recovery

    No full text
    Abstract Background House dust mite (HDM) induces greater responses than other allergens during allergen bronchoprovocation (ABP) testing. The two standardized methods for reporting results of ABP tests are the maximal percent fall in forced expiratory volume in one second (FEV1, max; %) and the area under the FEV1 vs time curve (AUC; %FEV1 x min). The relationship between these methods has not been previously investigated. Aims We aimed to measure the correlation between FEV1, max and AUC during the early asthmatic response (EAR) and the late asthmatic response (LAR), and to determine if the EAR recovery period for HDM would be longer than other allergens (cat, grass, horse, and ragweed). Methods We retrospectively calculated the AUC and correlation between FEV1, max and AUC during the EAR(0-2 h) and LAR(3-7 h) for each allergen. We compared EAR(0-3 h) and LAR(3-7 h) FEV1, max, AUC and absolute difference in FEV1, max to the most recovered FEV1 (FEV1, min). We performed pairwise comparisons of correlation and slope values using Fischer’s r to z transformation and t-tests, respectively. AUC and absolute differences in FEV1, max and FEV1, min were compared using a one-way ANOVA test, followed by a post-hoc Scheffe test. Results Correlation between the FEV1, max and AUC during the EAR(0-2 h) (n = 221) was 0.807, and was 0.798 during the LAR(3-7 h) (n = 157 of 221), (difference p = 0.408). The EAR(0-3 h) AUC and FEV1, max did differ between allergens (both p < 0.0001) but the LAR(3-7 h) AUC and FEV1, max did not (p = 0.548 and 0.824, respectively). HDM did not have a larger AUC or FEV1, max, than all other allergens during the EAR(0-3 h) or the LAR(3-7 h). The absolute difference between the FEV1, max and FEV1, min during the EAR(0-3 h) did not differ between allergens (p = 0.180). Conclusion The FEV1, max and AUC for both the EAR(0-2 h) and LAR(3-7 h) had excellent correlation, with no significant difference. Thus, significant bronchoconstriction will likely result in a longer recovery period. There was no evidence of delayed EAR(0-3 h) recovery following HDM challenges, so HDM did not induce a larger response compared to all the other allergens examined. Registration: Not registered. This is not a clinical trial. (This study is a retrospective analysis of data collected during several registered trials.

    IL-4 and IL-13 differentially regulate TLR-induced eosinophil-basophil differentiation of cord blood CD34+ progenitor cells.

    No full text
    Intrauterine environmental exposures have been shown to influence neonatal immunity and subsequent allergic disease development. We have previously shown that fewer lipopolysaccharide (LPS)-stimulated eosinophil-basophil (Eo/B) colonies grow from cord blood (CB) of high-atopic risk infants, compared to low-atopic risk infants. In the present study, we investigated whether a surrogate ex vivo TH2 milieu (i.e., either IL-4 or IL-13) could represent an underlying mechanism to explain our previous findings. CB CD34+ cells from healthy donors were cultured with IL-4 or IL-13 (in combination with LPS) and assessed for Eo/B differentiation using methylcellulose cultures and flow cytometry for related intracellular signalling pathways. Pharmacological inhibitors were added to the methylcellulose cultures to determine the effect of blocking intracellular signalling in CB CD34+ cells in relation to Eo/B colony forming unit (CFU) formation. Stimulation of CD34+ cells with IL-4, but not IL-13, reduced Eo/B CFU formation in the presence of LPS; this was found to be dependent on IL-4Rα and not IL-13Rα1. Additionally, IL-4 reduced the expression of ERK 1/2 after LPS stimulation, which was recovered by inhibition of IL-4Rα. While IL-13 did not have an inhibitory effect on ERK 1/2 expression, inhibition of ERK 1/2 significantly reduced Eo/B CFU formation. Thus, the responsiveness of CB CD34+ progenitor cells to LPS is differentially regulated by the TH2 cytokines, IL-4 and IL-13. This may have implications for in utero interactions between placental-derived pro-allergic cytokines and neonatal progenitor cells influencing Eo/B-mediated inflammatory responses in early life
    corecore