18 research outputs found

    Testosterone Effects On Renal Norepinephrine Content and Release in Rats With Different Y Chromosomes

    Get PDF
    The Y chromosome in spontaneously hypertensive rats (SHR) and stroke-prone rats has been shown to contain a locus that contributes to the hypertensive effect; both the sympathetic nervous system and testosterone may be involved. The objective of this study was to look at the effects of testosterone on renal norepinephrine (NE) release and content in the isolated perfused kidney in different Y chromosome backgrounds. The study involved male SHR, Wistar-Kyoto rats (WKY), and 2 consomic strains with different Y chromosomes (n=5 to 8 per group). Adult animals were castrated, and implants containing testosterone propionate were placed at the base of the neck. Blood testosterone levels were measured by radioimmunoassay 2 weeks after castration. The left kidney was isolated and perfused with oxygenated Krebs solution at a constant flow and temperature with KCl and electrical stimulation of the renal nerves. Perfusate was collected and analyzed for NE by high-performance liquid chromatography. Lactate dehydrogenase analyses were performed as a marker for potential tissue damage. Renal perfusate and renal tissue NE levels were significantly elevated by testosterone. The average NE increase with a single testosterone implant was 13.2 ng/mL, and for a double testosterone implant it was 29.8 ng/mL. The Y chromosome from the SHR produced a significant increase in renal NE release compared with the WKY Y chromosome. Significance was shown between all groups: 1 versus 2 implants, P=0.0067; 1 versus sham implants, P=0.015; 2 versus sham implants,

    Delivery of sry1, but not sry2, to the kidney increases blood pressure and sns indices in normotensive wky rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats with the SHR Y chromosome (SHR/y rat). A candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor responsible for testes determination. The SHR Y chromosome has six divergent Sry loci. The following study examined if exogenous <it>Sry1 </it>or Sry2 delivered to the kidney would elevate renal tyrosine hydroxylase, renal catecholamines, plasma catecholamines and telemetered BP over a 28 day period. We delivered 50 μg of either the expression construct Sry1/pcDNA 3.1, Sry2/pcDNA 3.1, or control vector into the medulla of the left kidney of normotensive WKY rats by electroporation. Weekly air stress was performed to determine BP responsiveness. Separate groups of animals were tested for renal function and plasma hormone patterns and pharmacological intervention using alpha adrenergic receptor blockade. Pre-surgery baseline and weekly blood samples were taken from <it>Sry1 </it>electroporated and control vector males for plasma renin, aldosterone, and corticosterone. BP was measured by telemetry and tyrosine hydroxylase and catecholamines by HPLC with electrochemical detection.</p> <p>Results</p> <p>In the animals receiving the <it>Sry1 </it>plasmid there were significant increases after 21 days in resting plasma norepinephrine (NE, 27%) and renal tyrosine hydroxylase content (41%, p < .05) compared to controls. BP was higher in animals electroporated with <it>Sry1 </it>(143 mmHg, p < .05) compared to controls (125 mmHg) between 2–4 weeks. Also the pressor response to air stress was significantly elevated in males electroporated with <it>Sry1 </it>(41 mmHg) compared to controls (28 mmHg, p < .001). <it>Sry2 </it>did not elevate BP or SNS indices and further tests were not done. The hormone profiles for plasma renin, aldosterone, and corticosterone between electroporated <it>Sry1 </it>and control vector males showed no significant differences over the 28 day period. Alpha adrenergic receptor blockade prevented the air stress pressor response in both strains. Urinary dopamine significantly increased after 7 days post Sry electroporation.</p> <p>Conclusion</p> <p>These results are consistent with a role for <it>Sry1 </it>in increasing BP by directly or indirectly activating renal sympathetic nervous system activity.</p

    Testosterone influences renal electrolyte excretion in SHR/y and WKY males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Y-chromosome (Yc) and testosterone (T) increase blood pressure and may also influence renal electrolyte excretion. Therefore, the goal of this study was to determine if the Yc combined with T manipulation could influence renal Na and K excretion.</p> <p>Methods</p> <p>To investigate the role of the Yc and T, consomic borderline hypertensive (SHR/y) and normotensive Wistar-Kyoto (WKY) rat strains were used (15 weeks) in three T treatment groups: castrate, castrate with T implant and gonadally intact males. Urine was collected (24 hrs at 15 weeks of age) for Na and K measurements by flame photometry. RT-PCR was used to demonstrate the presence of renal androgen receptor (AR) transcripts. Plasma T and aldosterone were measured by RIA. In another experiment the androgen receptor was blocked using flutamide in the diet.</p> <p>Results</p> <p>Na and K excretion were decreased by T in SHR/y and WKY. AR transcripts were identified in SHR/y and WKY kidneys. Plasma aldosterone was decreased in the presence of T. Blockade of the AR resulted in a significant increase in Na excretion but not in K excretion in both SHR/y and WKY males.</p> <p>Conclusion</p> <p>T influences electrolyte excretion through an androgen receptor dependent mechanism. There was not a differential Yc involvement in electrolyte excretion between WKY and SHR/y males.</p

    The Vehicle, Fall 1987

    Get PDF
    Table of Contents Sketches in the SunRodger L. Patiencepage 3 Reflecting PoolRob Montgomerypage 5 Grandpa\u27s Porcelain DollRichard E. Hallpage 6 Tintype 1837Catherine Friemannpage 6 PhotographSteven M. Beamerpage 7 Washerwoman\u27s SongBob Zordanipage 8 Scrambled Eggs for D.O.Lynne A. Rafoolpage 8 my mother would sayMonica Grothpage 9 Retired by His ChildrenDan Von Holtenpage 10 I am the oldestMonica Grothpage 11 Ice on WheatRob Montgomerypage 12 The Nature of the RoseTroy Mayfieldpage 12 Past NebraskaDan Hornbostelpage 13 Five Minute Jamaican VacationChristy Dunphypage 14 PhotographSteven M. Beamerpage 14 The Angry PoemChristy Dunphypage 15 Road UnfamiliarChristy Dunphypage 15 raised voicesMonica Grothpage 16 Old Ladies & MiniskirtsKara Shannonpage 17 FreakspeakBob Zordanipage 18 PortraitDan Von Holtenpage 18 Mobile VacuumKathleen L. Fairfieldpage 19 Rev. Fermus DickSteve Hagemannpage 20 PhotographSteven M. Beamerpage 21 What\u27s the Name of That Flower?Richard Jesse Davispage 22 RequestChristy Dunphypage 23 SketchPaul Seabaughpage 24 ExperiencedMarilyn Wilsonpage 26 Leaving: Two ViewsTina Phillipspage 27 AntaeusDan Von Holtenpage 28 Misogyny at 19J. D. Finfrockpage 29 A Mental CrippleSteve Hagemannpage 32 AssociationsRhonda Ealypage 33 Banana BreadGail Bowerpage 34 Bill and JackBradford B. Autenpage 35 After Image No. 2Rob Montgomerypage 35 VrrooomBeth Goodmanpage 36 Mr. Modern LoverMolly Maddenpage 36 TravelogueRodger L. Patiencepage 37 Down the HighwayJoan Sebastianpage 38 A Retread HeavenRob Montgomerypage 41 StuporDan Von Holtenpage 42 Love Poem After a Seizure in Your BedBob Zordanipage 43 PalsyChristy Dunphypage 44 Interview with Mr. MatthewsBob Zordanipage 45 Chasing Down Hot Air Balloons on a Sunday MorningRob Montgomerypage 48https://thekeep.eiu.edu/vehicle/1049/thumbnail.jp

    Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats

    Get PDF
    BACKGROUND: Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats that had the SHR Y chromosome locus crossed into their genome (SHR/y rat). A potential candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor that is responsible for testes development and the Sry protein may affect other target genes. METHODS: The following study examined if exogenous Sry would elevate adrenal Th, adrenal catecholamines, plasma catecholamines and blood pressure. We delivered 10 μg of either the expression construct, Sry1/pcDNA 3.1, or control vector into the adrenal medulla of WKY rats by electroporation. Blood pressure was measured by the tail cuff technique and Th and catecholamines by HPLC with electrochemical detection. RESULTS: In the animals receiving Sry there were significant increases after 3 weeks in resting plasma NE (57%) and adrenal Th content (49%) compared to vector controls. BP was 30 mmHg higher in Sry injected animals (160 mmHg, p < .05) compared to vector controls (130 mmHg) after 2–3 weeks. Histological analysis showed that the electroporation procedure did not produce morphological damage. CONCLUSION: These results provide continued support that Sry is a candidate gene for hypertension. Also, these results are consistent with a role for Sry in increasing BP by directly or indirectly activating sympathetic nervous system activity

    Testosterone influences renal electrolyte excretion in SHR/y and WKY males-6

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Testosterone influences renal electrolyte excretion in SHR/y and WKY males"</p><p>http://www.biomedcentral.com/1472-6793/8/5</p><p>BMC Physiology 2008;8():5-5.</p><p>Published online 26 Mar 2008</p><p>PMCID:PMC2329660.</p><p></p

    One percent agarose gel of RT-PCR androgen receptor (AR) transcripts taken from SHR (for control), SHR/y, and WKY kidneys

    No full text
    The arrow indicates the 580bp amplified AR transcript. SHR kidney (lane 1), no RT control (lane 2), WKY kidney (lane 3), no RT control (lane 4), SHR/y kidney (lane 5), no RT control (lane 6), ladder (lane 7), and no template control (lane 8).<p><b>Copyright information:</b></p><p>Taken from "Testosterone influences renal electrolyte excretion in SHR/y and WKY males"</p><p>http://www.biomedcentral.com/1472-6793/8/5</p><p>BMC Physiology 2008;8():5-5.</p><p>Published online 26 Mar 2008</p><p>PMCID:PMC2329660.</p><p></p
    corecore