22 research outputs found

    Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them.

    Get PDF
    Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo

    Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback

    Get PDF
    SummaryNeural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery

    Modulators of hormonal response regulate temporal fate specification in the Drosophila brain.

    No full text
    Neuronal diversity is at the core of the complex processing operated by the nervous system supporting fundamental functions such as sensory perception, motor control or memory formation. A small number of progenitors guarantee the production of this neuronal diversity, with each progenitor giving origin to different neuronal types over time. How a progenitor sequentially produces neurons of different fates and the impact of extrinsic signals conveying information about developmental progress or environmental conditions on this process represent key, but elusive questions. Each of the four progenitors of the Drosophila mushroom body (MB) sequentially gives rise to the MB neuron subtypes. The temporal fate determination pattern of MB neurons can be influenced by extrinsic cues, conveyed by the steroid hormone ecdysone. Here, we show that the activation of Transforming Growth Factor-β (TGF-β) signalling via glial-derived Myoglianin regulates the fate transition between the early-born α'β' and the pioneer αβ MB neurons by promoting the expression of the ecdysone receptor B1 isoform (EcR-B1). While TGF-β signalling is required in MB neuronal progenitors to promote the expression of EcR-B1, ecdysone signalling acts postmitotically to consolidate theα'β' MB fate. Indeed, we propose that if these signalling cascades are impaired α'β' neurons lose their fate and convert to pioneer αβ. Conversely, an intrinsic signal conducted by the zinc finger transcription factor Krüppel-homolog 1 (Kr-h1) antagonises TGF-β signalling and acts as negative regulator of the response mediated by ecdysone in promoting α'β' MB neuron fate consolidation. Taken together, the consolidation of α'β' MB neuron fate requires the response of progenitors to local signalling to enable postmitotic neurons to sense a systemic signal

    gamma-Tubulin function during female germ-cell development and oogenesis in Drosophila

    No full text
    A series of unconventional microtubule organizing centers play a fundamental role during egg chamber development in Drosophila. To gain a better understanding of their molecular nature, we have studied the centrosomal component gamma-tubulin during Drosophila oogenesis. We find that although single mutations in either of the two gamma-tubulin genes identified in Drosophila do not affect oogenesis progression the simultaneous depletion of both protein products has severe consequences. The combination of loss-of-function mutant alleles for the two gamma-tubulin genes leads to mitotic defects in female germ cells, resulting in agametic ovaries. A combination of weaker mutant alleles instead allows female germ-cell development to proceed, although the resulting egg chambers display pleiotropic abnormalities, most frequently affecting the number of nurse cells and oocytes per egg chamber. Thus, gamma-tubulin is required for several processes at different stages of germ-cell development and oogenesis, including oocyte determination and differentiation. Our data provide a functional link between a component of the peri-centriolar material, such as gamma-tubulin, and microtubule organization during Drosophila oogenesis. In addition, our results show that gamma-tubulin is required for female germ-cell proliferation and that the two gamma-tubulins present in Drosophila are functionally equivalent during female germ-cell development and oogenesis

    γ-Tubulin function during female germ-cell development and oogenesis in Drosophila

    No full text
    A series of unconventional microtubule organizing centers play a fundamental role during egg chamber development in Drosophila. To gain a better understanding of their molecular nature, we have studied the centrosomal component γ-tubulin during Drosophila oogenesis. We find that although single mutations in either of the two γ-tubulin genes identified in Drosophila do not affect oogenesis progression the simultaneous depletion of both protein products has severe consequences. The combination of loss-of-function mutant alleles for the two γ-tubulin genes leads to mitotic defects in female germ cells, resulting in agametic ovaries. A combination of weaker mutant alleles instead allows female germ-cell development to proceed, although the resulting egg chambers display pleiotropic abnormalities, most frequently affecting the number of nurse cells and oocytes per egg chamber. Thus, γ-tubulin is required for several processes at different stages of germ-cell development and oogenesis, including oocyte determination and differentiation. Our data provide a functional link between a component of the peri-centriolar material, such as γ-tubulin, and microtubule organization during Drosophila oogenesis. In addition, our results show that γ-tubulin is required for female germcell proliferation and that the two γ-tubulins present in Drosophila are functionally equivalent during female germ-cell development and oogenesis

    A developmental stretch-and-fill process that optimises dendritic wiring

    No full text
    The way in which dendrites spread within neural tissue determines the resulting circuit connectivity and computation. However, a general theory describing the dynamics of this growth process does not exist. Here we obtain the first time-lapse reconstructions of neurons in living fly larvae over the entirety of their developmental stages. We show that these neurons expand in a remarkably regular stretching process that conserves their shape. Newly available space is filled optimally, a direct consequence of constraining the total amount of dendritic cable. We derive a mathematical model that predicts one time point from the previous and use this model to predict dendrite morphology of other cell types and species. In summary, we formulate a novel theory of dendrite growth based on detailed developmental experimental data that optimises wiring and space filling and serves as a basis to better understand aspects of coverage and connectivity for neural circuit formation

    The branching code: a model of actin-driven dendrite arborisation

    No full text
    Dendrites display a striking variety of neuronal type-specific morphologies, but the mechanisms and principles underlying such diversity remain elusive. A major player in defining the morphology of dendrites is the neuronal cytoskeleton, including evolutionarily conserved actin-modulatory proteins (AMPs). Still, we lack a clear understanding of how AMPs might support developmental phenomena such as neuron-type specific dendrite dynamics. To address precisely this level of in vivo specificity, we concentrated on a defined neuronal type, the class III dendritic arborisation (c3da) neuron of Drosophila larvae, displaying actin-enriched short terminal branchlets (STBs). Computational modelling reveals that the main branches of c3da neurons follow a general growth model based on optimal wiring, but the STBs do not. Instead, model STBs are defined by a short reach and a high affinity to grow towards the main branches. We thus concentrated on c3da STBs and developed new methods to quantitatively describe dendrite morphology and dynamics based on in vivo time-lapse imaging of mutants lacking individual AMPs. In this way, we extrapolated the role of these AMPs in defining STB properties. We propose that dendrite diversity is supported by the combination of a common step, refined by a neuron type-specific second level. For c3da neurons, we present a molecular model of how the combined action of multiple AMPs in vivo define the properties of these second level specialisations, the STBs

    The branching code: A model of actin-driven dendrite arborization

    No full text
    The cytoskeleton is crucial for defining neuronal-type-specific dendrite morphologies. To explore how the complex interplay of actin-modulatory proteins (AMPs) can define neuronal types in vivo, we focused on the class III dendritic arborization (c3da) neuron of Drosophila larvae. Using computational modeling, we reveal that the main branches (MBs) of c3da neurons follow general models based on optimal wiring principles, while the actin-enriched short terminal branches (STBs) require an additional growth program. To clarify the cellular mechanisms that define this second step, we thus concentrated on STBs for an in-depth quantitative description of dendrite morphology and dynamics. Applying these methods systematically to mutants of six known and novel AMPs, we revealed the complementary roles of these individual AMPs in defining STB properties. Our data suggest that diverse dendrite arbors result from a combination of optimal-wiring-related growth and individualized growth programs that are neuron-type specific

    Cell-Autonomous Control of Neuronal Dendrite Expansion via the Fatty Acid Synthesis Regulator SREBP

    No full text
    Summary: During differentiation, neurons require a high lipid supply for membrane formation as they elaborate complex dendritic morphologies. While glia-derived lipids support neuronal growth during development, the importance of cell-autonomous lipid production for dendrite formation has been unclear. Using Drosophila larva dendritic arborization (da) neurons, we show that dendrite expansion relies on cell-autonomous fatty acid production. The nociceptive class four (CIV) da neurons form particularly large space-filling dendrites. We show that dendrite formation in these CIVda neurons additionally requires functional sterol regulatory element binding protein (SREBP), a crucial regulator of fatty acid production. The dendrite simplification in srebp mutant CIVda neurons is accompanied by hypersensitivity of srebp mutant larvae to noxious stimuli. Taken together, our work reveals that cell-autonomous fatty acid production is required for proper dendritic development and establishes the role of SREBP in complex neurons for dendrite elaboration and function. : Ziegler et al. highlight the endogenous role of fatty acid synthesis for proper neuronal dendrite growth during development. Using Drosophila da neurons, they show that large CIVda neurons cell-autonomously rely on fatty acid synthesis through the lipid synthesis master regulator SREBP. Keywords: Drosophila, dendrite differentiation, fatty acids, lipids, SREBP, metabolism, brain, nociceptio
    corecore