8,564 research outputs found

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+âˆŁÏˆâˆŁÎłÏˆ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, Îł\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Alien Registration- Gagnon, L. Henry (Fryeburg, Oxford County)

    Get PDF
    https://digitalmaine.com/alien_docs/18073/thumbnail.jp

    Building Stronger Nonprofits Through Better Financial Management: Early Efforts in 26 Youth-Serving Organizations

    Get PDF
    Outlines the Financial Management in Out-of-School Time initiative to improve nonprofits' long-term financial management capacity and reform funding practices that weaken it, challenges participating nonprofits faced, progress to date, and early lessons

    Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym

    Full text link
    We present a formalism that allows the computation of the baryon asymmetry of the universe from first principles of statistical physics and quantum field theory that is applicable to certain types of beyond the Standard Model physics (such as the neutrino Minimal Standard Model -- Μ\nuMSM) and does not require the solution of Boltzmann or Kadanoff-Baym equations. The formalism works if a thermal bath of Standard Model particles is very weakly coupled to a new sector (sterile neutrinos in the Μ\nuMSM case) that is out-of-equilibrium. The key point that allows a computation without kinetic equations is that the number of sterile neutrinos produced during the relevant cosmological period remains small. In such a case, it is possible to expand the formal solution of the von Neumann equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose a toy model (containing only two active and two sterile neutrinos) to illustrate the use of the formalism, but it could be applied to other models.Comment: 26 pages, 10 figure

    Framing health and foreign policy: lessons for global health diplomacy

    Get PDF
    Global health financing has increased dramatically in recent years, indicative of a rise in health as a foreign policy issue. Several governments have issued specific foreign policy statements on global health and a new term, global health diplomacy, has been coined to describe the processes by which state and non-state actors engage to position health issues more prominently in foreign policy decision-making. Their ability to do so is important to advancing international cooperation in health. In this paper we review the arguments for health in foreign policy that inform global health diplomacy. These are organized into six policy frames: security, development, global public goods, trade, human rights and ethical/moral reasoning. Each of these frames has implications for how global health as a foreign policy issue is conceptualized. Differing arguments within and between these policy frames, while overlapping, can also be contradictory. This raises an important question about which arguments prevail in actual state decision-making. This question is addressed through an analysis of policy or policy-related documents and academic literature pertinent to each policy framing with some assessment of policy practice. The reference point for this analysis is the explicit goal of improving global health equity. This goal has increasing national traction within national public health discourse and decision-making and, through the Millennium Development Goals and other multilateral reports and declarations, is entering global health policy discussion. Initial findings support conventional international relations theory that most states, even when committed to health as a foreign policy goal, still make decisions primarily on the basis of the 'high politics' of national security and economic material interests. Development, human rights and ethical/moral arguments for global health assistance, the traditional 'low politics' of foreign policy, are present in discourse but do not appear to dominate practice. While political momentum for health as a foreign policy goal persists, the framing of this goal remains a contested issue. The analysis offered in this article may prove helpful to those engaged in global health diplomacy or in efforts to have global governance across a range of sectoral interests pay more attention to health equity impacts

    L'accumulation et l'élimination de cadmium par deux mousses aquatiques, Fontinalis dalecarlica et Platyphypnidium ripariodes : Influence de la concentration de Cd, du temps d'exposition, de la dureté de l'eau et de l'espÚce de mousses

    Get PDF
    Cette étude en laboratoire traite de l'accumulation et de l'élimination du Cd réalisées par deux mousses aquatiques indigÚnes du Québec, Fontinalis dalecarlica et Platyhypnidium riparioides. Les expositions au Cd étaient de 0 (témoin), 0,8, 2 et 10 ”g·L-1, concentrations retrouvées en milieu naturel (non contaminé) et contaminé. Les expériences ont été réalisées à trois niveaux de dureté de l'eau (10 à 15, 40 à 50, 80 à 100 mg·L-1 de CaCO3), à alcalinité constante (80 à 100 mg·L-1 de CaCO3) et à pH stable (7,30) durant une période de 28 jours. Les facteurs d'augmentation des concentrations (FAC) ont démontré une diminution de l'accumulation totale de Cd dans les mousses dans 75% des cas lorsque la dureté de l'eau passe de trÚs douce à dure. Les facteurs de contamination résiduelle (FCR) démontrent la lenteur de l'élimination du Cd par les mousses, et ce, indépendamment de la dureté de l'eau ou de la contamination préalablement subie. Deux équations de régression multiple par étape (Stepwise) ont été établies pour expliquer les facteurs influençant l'accumulation et l'élimination de Cd réalisées par les mousses. Les variables indépendantes incluses dans les équations linéaires de prédiction pour l'accumulation et l'élimination étaient la concentration de Cd dans l'eau, le temps d'exposition, la dureté de l'eau, l'espÚce de mousses utilisée et/ou les interactions de ces variables. Les équations linéaires de prédiction pour l'accumulation et l'élimination ont permis d'expliquer respectivement 92% et 71% de la variance observée. Cette identification des principaux facteurs influençant l'accumulation et l'élimination du Cd dans les mousses est d'une grande importance pour la compréhension des processus complexes dirigeant l'absortion des métaux lourds par des organismes vivants. Les équations permettent également de mieux expliquer les interactions engendrées par la variation de divers paramÚtres sur l'accumulation et l'élimination du Cd par les mousses aquatiques.Aquatic mosses have played a large part in the assessment of toxic elements in water. The advantage of mosses over direct water sampling is that the use of the former lessens spatial and temporal variations, enhances the level of contaminant identification by concentrating toxic elements, and provides information relative to the bioavailable portion. However, the concentration of metals that can be measured in mosses is not a reliable indicator of the concentration of toxic elements in the water, which is why we need to model the bioaccumulation phenomenon.The present laboratory study deals with the accumulation and elimination of Cd by two indigenous Quebec aquatic mosses: Fontinalis dalecarlica and Platyhypnidium riparioides. The previously acclimatized mosses were treated with different concentrations of Cd, three different levels of water hardness, a constant alkalinity and constant pH level for a period of 28 days, in order to establish their bioaccumulative capacity. Cd exposure concentrations were 0 (control), 0.8, 2 and 10 mg·L-1, with a replication at 10 mg·L-1. The experiments were carried out at three levels of water hardness (10 to 15, 40 to 50, 80 to 100 mg·L-1 of CaCO3), with a constant degree of alkalinity (80 to 100 mg·L-1 of CaCO3) and stable pH (7.30). The mosses subsequently went through an elimination period (Cd-free water) of 28 days. The triplicate moss samples were mineralized using nitric acid and all Cd measurements were made by atomic absorption spectrophotometry. The results indicate that the water chemistry conditions remained stable and were properly controlled. The aquatic mosses demonstrated a considerable ability to absorb and adsorb Cd: the measured Cd water concentrations were less than the nominal concentrations. Nonetheless, moss uptake of Cd improves with an increase in Cd contamination and the concentration factors (CF) range from 6 to 122. For the same exposure concentration, the CF drops in some 63% of those instances where water hardness rises from very soft, through soft, to hard. In 75% of the cases there is a drop in CF when water hardness increases directly from very soft to hard. With a stable concentration (e.g. 2 mg·L-1), F. dalecarlica has respective CFs of 26.3, 22.2 and 18, which demonstrates the negative gradation of Cd accumulation as water hardness increases. The residual contamination factors (RCF) bear witness to the slow rate of Cd elimination by the mosses, irrespective of the level of water hardness or of any previous contamination. The elimination factor for RCF is never greater than 2. Mosses take up metals faster than they can eliminate them and have a memory of past contaminations, which is an advantage when it comes to studying ad hoc and/or sporadic contamination phenomena.Two stepwise multiple regression equations have been set up to explain the factors that impact on accumulation and elimination of Cd by mosses. The variables included in the equations were: level of Cd concentration in the water; exposure time; water hardness; the moss species involved, and/or the interactions between these variables. The predictive linear equations for the accumulation and elimination provided explanations for 92% and 71% respectively of the observed variances. The predictive linear equation for accumulation establishes that the length of exposure is the principal parameter responsible for the uptake of Cd by the aquatic mosses. It shows that the accumulation of Cd by the mosses is initially influenced by the level of Cd concentration in the water, but also depends on the length of time over which the bryophytes are exposed to this concentration. Thus, the higher the Cd concentration, the shorter the exposure time for the moss contamination, and vice versa. The second variable is the effect of water hardness taken together with the exposure time. This is a negative variable: the greater the increase in water hardness, the greater the exposure time required to obtain the same degree of moss contamination. This is indicative of the impact of Ca++ and Mg++ on moss uptake. The impact of water hardness is probably the consequence of the availability of or preference of plant-binding sites for Ca++ and Mg++ ions, thus reducing the number of available locations for Cd accumulation. Water hardness and Cd concentration levels are the third variable in this equation and are probably linked to the effect of water hardness on the bioavailability of Cd for the mosses. This variable may also explain why the increase in Cd concentration levels in the water lessens the impact of water hardness on the total accumulation of Cd in the mosses. Finally, the equation identifies a greater level of accumulation in the P. riparoides.Release linear regression shows that the absence of Cd in the water is the major parameter in the elimination of Cd by aquatic mosses. We should remember that the bryophytes are seeking to achieve a steady state condition with their environment, since the Cd is an element that is neither regulated or essential. Its elimination has little to do with water hardness, but is caused by the inversion of a diffusion gradient when the environment is no longer Cd contaminated. During the elimination process, the Ca++ and Mg++ ions have no real impact on the release of Cd by the mosses. The length of prior exposure does affect elimination: the greater it is, the longer the release period required for moss decontamination. Exposure time is less important during elimination than during accumulation. Elimination is a very slow process, and a longer study would probably have shown that this is a major factor in the elimination of moss-accumulated Cd.The present identification of the major factors impacting on the accumulation and elimination of Cd in mosses is extremely important if we are to understand the complex processes that determine the absorption of heavy metals by living organisms. The equations also allow us to better explain the interactions caused by variations in the different parameters with respect to the accumulation and elimination of Cd by aquatic mosses

    First record of the European Giant File Clam, Acesta excavata (Bivalvia: Pectinoidea: Limidae), in the Northwest Atlantic

    Get PDF
    Two large bivalve specimens collected in Bay d’Espoir, a deep fjord situated on the south coast of Newfoundland, are described and identified as belonging to the species Acesta excavata (Fabricius 1779). In situ observations onboard the manned submersible PISCES IV and color videos have provided information on the vertical distribution, density and habitat of the species. Maximum abundances of about 15 large individuals/m2 occurred on sheltered rock outcrops at depth ranging from 550 to 775 m, where warm (6°C) continental slope water is found. Differences in shape and thickness between the valves of the two specimens appear to be related to the degree of exposure to rock falls (i.e., sheltered versus exposed habitat). Prior to this account, the European Giant File Clam had never been encountered west of the Azores Islands in the North Atlantic
    • 

    corecore