8,569 research outputs found

    d+Au Collisions at STAR

    Full text link
    STAR has measured forward pi^0 production in p+p and d+Au collisions at sqrt{s_{NN}}=200 GeV. The p+p yield generally agrees with NLO pQCD calculations. The d+Au yield is strongly suppressed at =4.0, well below shadowing expectations. Exploratory measurements of azimuthal correlations between forward pi^0 and mid-rapidity charged hadrons show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei. Future measurements to elucidate the dynamics underlying these observations are also described.Comment: 4 pages, 3 figures. To appear in proceedings of DIS200

    Transverse Spin Studies with STAR at RHIC

    Get PDF
    STAR has observed sizable transverse single-spin asymmetries for inclusive pi^0 production at forward rapidity in p+p collisions at sqrt{s}=200 GeV. These asymmetries may arise from either the Sivers or Collins effect. Studies are underway during the current RHIC run to elucidate the dynamics that underlie these single-spin asymmetries. Additional measurements are underway to search for the Sivers effect in mid-rapidity di-jet production.Comment: 4 pages, 3 figures, to appear in DIS2006 proceeding

    Computing Matveev's complexity via crystallization theory: the boundary case

    Get PDF
    The notion of Gem-Matveev complexity has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via Gem-Matveev complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2\mathbb D^2 and two exceptional fibers and, therefore, for all torus knot complements.Comment: 27 pages, 14 figure

    Pedestal and Peak Structure in Jet Correlation

    Full text link
    We study the characteristics of correlation between particles in jets produced in heavy-ion collisions. In the framework of parton recombination we calculate the η\eta and ϕ\phi distributions of a pion associated with a trigger particle. The origin of the pedestal in Δη\Delta\eta is related to the longitudinal expansion of the thermal partons that are enhanced by the energy loss of hard partons traversing the bulk medium. The peaks in Δη\Delta\eta and Δϕ\Delta\phi are related to the same angular spread of the shower partons in a jet cone. No artificial short- or long-range correlations are put in by hand. A large part of the correlation between hadrons in jets is due to the correlation among the shower partons arising from momentum conservation. Recombination between thermal and shower partons dominates the correlation characterisitics in the intermediate pTp_T region.Comment: 14 pages in LaTex and 2 figures in ep

    Global analysis of muon decay measurements

    Get PDF
    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other non-standard model interactions are comparable. The value of the Michel parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table

    Comparing the reaction profiles of single iron catalytic sites in enzymes and in reticular frameworks for methane-to-methanol oxidation

    Get PDF
    The design of synthetic inorganic catalysts mimicking the first coordination spheres of enzymatic cofactors often results in lower yields and selectivity than their biological counterparts. In this study, we exploit Kohn-Sham density functional methods to compare the reaction profiles of four single iron-based catalysts for the direct oxidation of methane to methanol: two biomimetic models based on two enzymes (cytochrome P450 and taurine dioxygenase [TauD]) and two synthetic reticular frameworks (iron-BEA zeolite and tri-iron oxo-center-based metal-organic framework). Both the biomimetic and inorganic catalysts show almost zero selectivity toward methanol for methane conversions >1% at ambient temperature. This study highlights that iron's first coordination shell can influence selectivity toward methanol but to a limited extent. In the absence of methanol protection strategies, high selectivity can be reached only by mimicking the reaction microenvironment of enzymes beyond the first coordination shell of iron

    Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction

    Get PDF
    The cross section of the radiative proton capture reaction on the drip line nucleus 12N was investigated using the Asymptotic Normalization Coefficient (ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12 MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction. The optical potentials used and the DWBA analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time with the transfer measurement. From the transfer, we determined the square of the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.

    Resonant electron heating and molecular phonon cooling in single C60_{60} junctions

    Full text link
    We study heating and heat dissipation of a single \c60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation.Comment: Accepted in Phys. Rev. Let

    Branching ratios for the beta decay of 21Na

    Get PDF
    We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depended on this branching ratio. However, until now only relatively imprecise (and, in some cases, contradictory) values existed for it. Our new result, 4.74(4)%, reduces but does not remove the reported discrepancy with the standard model.Comment: Revtex4, 2 fig
    • …
    corecore