14 research outputs found

    Colorimetric tools for solid-phase organic synthesis

    Get PDF
    One of the unresolved problems of solid-phase organic synthesis (SPOS) is the availability of general and rapid methods to monitor the transformation of functional groups present in molecules supported on insoluble supports. Color tests, far from providing the ultimate solution, may help in detection (and sometimes in quantification) of different functional groups. In this short review, we have collected most of the methods available and applied in SPOS with an Experimental Section that describes the procedure we have successfully applied to bead analyses in our laboratories

    Lipids in Atherosclerosis: Pathophysiology and the Role of Calculated Lipid Indices in Assessing Cardiovascular Risk in Patients with Hyperlipidemia

    No full text
    The role of lipids is essential in any phase of the atherosclerotic process, which is considered a chronic lipid-related and inflammatory condition. The traditional lipid profile (including the evaluation of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein) is a well-established tool to assess the risk of atherosclerosis and as such has been widely used as a pillar of cardiovascular disease prevention and as a target of pharmacological treatments in clinical practice over the last decades. However, other non-traditional lipids have emerged as possible alternative predictors of cardiometabolic risk in addition to traditional single or panel lipids, as they better reflect the overall interaction between lipid/lipoprotein fractions. Therefore, this review deals with the lipid involvement characterizing the pathophysiology of atherosclerosis, discussing some recently proposed non-traditional lipid indices and, in the light of available knowledge, their actual potential as new additive tools to better stratify cardiovascular risk in patients with hyperlipidemia as well as possible therapeutic targets in the clinical practice

    Synthesis of a new family of 2-ethylidene-γ-unsaturated δ-amino esters via microwave activated Stille coupling

    No full text
    A simple approach to a new family of enantiomerically enriched polyunsaturated t-Boc-protected-δ-amino esters is described, via microwave promoted Stille coupling of (Z)-methyl-2-bromobutenoate with stannylated allylamines. The reaction conditions are mild and selective and disclose a simple way to 1-substituted butenoates of defined geometry

    Vitamin D Determinants, Status, and Antioxidant/Anti-inflammatory-Related Effects in Cardiovascular Risk and Disease: Not the Last Word in the Controversy

    No full text
    Beyond its key role in calcium homeostasis, vitamin D has been found to significantly affect the cardiovascular (CV) system. In fact, low vitamin D levels have been associated with increased CV risk, as well as increased CV morbidity and mortality. The majority of effects of this molecule are related directly or indirectly to its antioxidative and anti-inflammatory properties. Generally, vitamin D insufficiency is considered for 25-hydroxyvitamin D (25(OH)D) levels between 21–29 ng/mL (corresponding to 52.5–72.5 nmol/L), deficiency as 25(OH)D levels less than 20 ng/mL (<50 nmol/L), and extreme deficiency as 25(OH)D less than 10 ng/mL (<25 nmol/L). However, the definition of an optimal vitamin D status, as defined by 25(OH)D, remains controversial for many extra-bone conditions, including CV disease. In this review, confounding factors affecting the 25(OH)D measurement and status will be discussed. In particular, available evidence on the mechanism and role of vitamin D in relation to CV risk and disease through its antioxidant effect will be reported, also facing the aspect regarding the debate on the minimum blood 25(OH)D level required to ensure optimal CV health

    Dimeric self-assembly of pyridyl guanidinium-carboxylates in polar solvents

    No full text
    A series of pyridyl guanidinium–carboxylates has been prepared and the dimeric self-assembly of these studied in H2O/DMSO mixtures, principally using dilution isothermal calorimetry. Compounds 5 and 6, incorporating an aromatic ring in the “tethering” region between the guanidinium and carboxylate groups, demonstrate the strongest dimerisation in neat DMSO. X-ray crystal structures of 5 and 6 reveal two different dimerisation architectures in the solid-state, but both involve carboxylate–guanidinium salt bridges as anticipated, and ?–? interactions. Compounds 10–16 incorporating peptidic fragments between the guanidinium and carboxylate groups, showed reduced dimerisation strength with increased amino acid content, but also sustained dimerisation under increasingly aqueous conditions, up to 50?% H2O/DMSO in the case of 14 and 15. The extent of our study in H2O/DMSO mixtures was determined by substrate solubility of 10–16, and not the limit of self-assembly.<br/

    FIB-4 Index and Neutrophil-to-Lymphocyte-Ratio as Death Predictor in Coronary Artery Disease Patients

    No full text
    Nonalcoholic fatty liver disease (NAFLD)-associated liver fibrosis is likely related to coronary artery disease (CAD) by the mediation of systemic inflammation. This study aimed at evaluating the predictive value of neutrophil-to-lymphocyte-ratio (NLR) and fibrosis-4 index (FIB-4), indices of inflammation and fibrosis, respectively, on CAD mortality. Data from 1460 CAD patients (1151 males, age: 68 ± 10 years, mean ± SD) were retrospectively analyzed. Over a median follow-up of 26 months (interquartile range (IQR) 12–45), 94 deaths were recorded. Kaplan–Meier survival analysis revealed worse outcomes in patients with elevation of one or both biomarkers (FIB-4 > 3.25 or/and NLR > 2.04, log-rank p-value p = 0.023), whereas an increase in both biomarkers confers a risk corresponding to HR = 3.5 (95% CI: 1.6–7.8, p = 0.002). Categorization of patients with elevated FIB-4/NLR could provide valuable information for risk stratification and reduction of residual risk in CAD patients

    Changes in Plasma Bioactive Lipids and Inflammatory Markers during a Half-Marathon in Trained Athletes

    No full text
    Background: Exercise may affect lipid profile which in turn is related to inflammation, although changes of ceramides, diacylglycerols-DAG and sphingomyelin-SM and their relationship with inflammatory parameters following a half-marathon have never been examined. Methods: Ceramides, DAG and SM, and markers of inflammation (soluble fractalkine-CX3CL1, vascular endothelial growth factor-VEGF, interleukin6-IL-6 and tumor necrosis factorα-TNFα) were evaluated in trained half-marathoners before, post-race (withdrawal within 20 min after the race end) and 24 h after. Results: IL-6 and CX3CL1 increased immediately after the race, returning to baseline after 24 h. Total ceramides and total DAG significantly decreased post-race. Several ceramide classes decreased after exercise, while only one of the DAG (36:3) changed significantly. Total SM and specific species did not significantly change. Conclusion: Some inflammatory parameters (IL-6 and CX3CL1) transiently increased after the race, and, being reversible, these changes might represent a physiological response to acute exercise rather than a damage-related response. The decrease of specific lipid classes, i.e., DAGs and ceramides, and the lack of their relationship with inflammatory parameters, suggest their involvement in beneficial training effects, opening promising research perspectives to identify additional mechanisms of aerobic exercise adaptation
    corecore