15 research outputs found

    Control in EPICS for Conditioning Test Stands for ESS

    Full text link
    CEA Irfu Saclay is involved as partner in the ESS accelerator construction through different work-packages: controls for several RF test stands, for cryomodule demonstrators, for the RFQ coupler test and for the conditioning around 120 couplers and the tests of 8 cryomodules. Due to the high number of components it is really crucial to automatize the conditioning. This paper describes how the control of these test stands was done using the ESS EPICS Environment and homemade EPICS modules. These custom modules were designed to be as generic as possible for reuse in future similar platforms and developments. They rely on the IOxOS FMC ADC3111 acquisition card, Beckhoff EtherCAT modules and the MRF timing system.Comment: 16th International Conference on Accelerator and Large Experimental Physics Control Systems, Oct 2017, Barcelona, Spain. pp.TUPHA20

    MRF Timing System Design at SARAF

    No full text
    International audienceCEA Saclay Irfu is in charge of an important part of the control system of the SARAF LINAC accelerator based at Soreq (Israel). This includes, among other, the control of the timing system (synchronization and timestamping). CEA has already installed and uses successfully the timing distribution with MRF on test benches for ESS or IPHI, so it has been decided to use the same technologies. The reference frequency will be distributed along the accelerator by a master oscillator Wenzel and the UTC time will be based on a Meridian II GPS, these 2 devices will be connected to the Event Master (EVM) card which is the main element of the timing system architecture. Through an optical fiber network, the MRF timing system allows to distribute downstream and upstream events with a µs propagation time. Currently, we are working on development in order to also use it for the machine protection system of the accelerator. In this paper, hardware, timing architecture, software developments and tests will be presented

    The Control System of the Elliptical Cavity and Cryomodule Test Stand Demonstrator for ESS

    No full text
    International audienceCEA IRFU Saclay* is taking part of ESS (European Spallation Source)** construction through several packages and, especially in the last three years on the Elliptical Cavity and Cryomodule Test stand Demonstrator (ECCTD)***. The project consists of RF test, conditioning, cryogenic cool-down and regulations of eight cryomodules with theirs four cavities each. For now, two medium beta cavities cryomodules have been successfully tested. This paper describes the context and the realization of the control system for cryogenic and RF processes, added to cavities tuning motorization relying on COTS solutions: Siemens PLC, EtherCAT Beckhoff modules, IOxOS fast acquisition cards and MRF timing cards

    Control in EPICS for Conditioning Test Stands for ESS

    No full text
    International audienceCEA Irfu Saclay is involved as partner in the ESS accelerator construction through different work-packages: controls for several RF test stands, for cryomodule demonstrators, for the RFQ coupler test and for the conditioning around 120 couplers and the tests of 8 cryomodules. Due to the high number of components it is really crucial to automatize the conditioning. This paper describes how the control of these test stands was done using the ESS EPICS Environment and homemade EPICS modules. These custom modules were designed to be as generic as possible for reuse in future similar platforms and developments. They rely on the IOxOS FMC ADC3111 acquisition card, Beckhoff EtherCAT modules and the MRF timing system

    IRFU EPICS Environment

    No full text
    International audienceThe 3 years collaboration with ESS* at Lund (Sweden) has given us the opportunity to use new COTS hardware and new tools. Based on that experience, we have developed the IEE (IRFU** EPICS Environment) by retaining relevant and scalable ESS solutions. This platform centralized several functionalities, fully installed by scripting, on a server that is running on a virtual machine. The functionalities are an EPICS environment and the root file system with the kernel for each embedded systems. In order to provide homogeneous EPICS modules between all collaborators, a template was designed and used as containers for new developments. Furthermore, a development and a production workflow is also proposed and strongly recommended. Due to the current responsibility of CEA IRFU to provide an EPICS platform for SARAF** at Tel Aviv (Israel), IEE was chosen as the standard platform for the whole accelerator. This paper will present the new standard IRFU EPICS Environment based on MTCA and virtual machines

    vscode-epics, a VSCode Module to Enlighten Your EPICS Code

    No full text
    International audiencevscode-epics is a Visual Studio Code module developed by CEA Irfu that aims to enlight your EPICS code. This module makes developer life easier, improves code quality and helps standardizing EPICS code. It provides syntax highlighting, snippets and header template for EPICS file and provides snippets for WeTest*. This VSCode module is based on Visual Studio Code language Extension and it uses basic JSON files that make feature addition easy. The number of downloads increases version after version and the different feedback motivates us to strongly maintain it for the EPICS community. Since 2019, some laboratories of the EPICS community have participated in the improvement of the module and it seems to have a nice future (linter, snippet improvements, specific language support, etc.). The module is available on Visual Studio Code marketplace** and on EPICS extension GitHub***. CEA Irfu is open to bug notifications, enhancement suggestions and merge requests to continuously improve vscode-epics

    Status of the GBAR control project at CERN

    No full text
    International audienceOne yet unanswered questions in physics today concerns the action of gravity upon antimatter. The GBAR experiment proposes to measure the free fall acceleration of neutral antihydrogen atoms. Installation of the project at CERN (ELENA) began in late 2016. This research project is facing new challenges and needs flexibility with hardware and software. EPICS modularity and distributed architecture has been tested for control system and for providing flexibility for future installation improvement. This paper describes the development of the software and the set of software tools that are being used on the project

    Automated Procedure for Conditioning of Normal Conducting Accelerator Cavities

    No full text
    International audienceRadio frequency (RF) conditioning is an essential stage during the preparation of particle accelerator cavities for operation. During this process the cavity field is gradually increased to the nominal parameters enabling the outgassing of the cavity and the elimination of surface defects through electrical arcing. However, this process can be time-consuming and labor-intensive, requiring skilled operators to carefully adjust the RF parameters. This proceeding presents the software tools for the development of an automatized EPICS control application with the aim to accelerate and introduce flexibility to the conditioning process. The results from the conditioning process of the ESS Radio-Frequency Quadrupole (RFQ) and the parallel conditioning of Drift-Tube Linac (DTL) tanks will be presented demonstrating the potential to save considerable time and resources in future RF conditioning campaigns

    Machine Protection System at SARAF

    No full text
    International audienceCEA Saclay Irfu is in charge of the major part of the control system of the SARAF-LINAC accelerator based at Soreq in Israel. This scope also includes the Machine Protection System. This system prevents any damage in the accelerator by shutting down the beam in case of detection of risky incidents like interceptive diagnostics in the beam or vacuum or cooling defects. So far, the system has been used successfully up to the MEBT. It will be tested soon for the super conducting Linac consisting of 4 cryomodules and 27 cavities. This Machine Protection System relies on three sets: the MRF timing system that is the messenger of the "shut beam" messages coming from any devices, IOxOS MTCA boards with custom FPGA developments that monitor the Section Beam Current Transmission along the accelerator and a Beam Destination Master that manages the beam destination required. This Destination Master is based on a master PLC. It permanently monitors Siemens PLCs that are in charge of the "slow" detection for fields such as vacuum, cryogenic and cooling system. The paper describes the architecture of this protection system and the exchanges between these three main parts

    ESS RFQ: Construction Status and Power Couplers Qualification

    No full text
    International audienceThe 352 MHz Radio Frequency Quadrupole (RFQ) for the European Spallation Source ERIC (ESS) will be de-livered during 2019. It is provided by CEA, IRFU, Sac-lay/France. It consists of five sections with a total length of 4.6 m and accelerates the proton beam from 75 keV up to 3.6 MeV. It will be feed with 1.6 MW peak power through two coaxial loop couplers. This paper will present the manufacturing status of the five sections and the qualification test of the RF power couplers
    corecore