3 research outputs found

    Phenotype-directed Therapy with Mepolizumab for Urban Children with Exacerbation-Prone Asthma

    Get PDF
    Rationale: Asthma exacerbations are common in urban children and have significant short- and long-term consequences. Elevated peripheral blood and airway eosinophils have been identified as risk factors for exacerbations, and therapies targeting these biomarkers reduce exacerbations in adults; however, data on anti-eosinophil treatment in children and adolescents are limited. The primary objective of this study is to determine if phenotype-directed use of mepolizumab reduces the rate of asthma exacerbations in urban children. Methods: Urban children 6-17 years of age (n=290) with exacerbation-prone asthma (2+ exacerbations in previous year) and blood eosinophils ≥150/mm3 were randomized 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo every 4 weeks added to guideline-based care for 1 year. The primary outcome was the number of asthma exacerbations treated with systemic corticosteroids; a comparison of the two treatment groups was evaluated using a negative-binomial model. Results: Mepolizumab significantly reduced peripheral blood eosinophils (p\u3c0.01) and nasal eosinophils (p\u3c0.01). The rate of asthma exacerbations was significantly lower in mepolizumab (0.96 exacerbations/year) vs. placebo (1.30 exacerbations/year) treated participants [relative risk 0.73 (95% confidence interval 0.56-0.96), p=0.027]. There were no significant differences in secondary outcomes, including time to first exacerbation, lung function, quality of life, or composite asthma severity index (CASI). Post hoc, the time to second asthma exacerbation increased significantly with mepolizumab (p=0.02). Adverse events were similar between groups. Conclusions: Phenotype-directed therapy with mepolizumab in urban children and adolescents with exacerbation-prone eosinophilic asthma significantly reduced recurrent exacerbations and was well tolerated, but did not impact other asthma outcomes

    Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): a randomised, double-blind, placebo-controlled, parallel-group trial

    No full text
    BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per μL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline

    Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study

    No full text
    Background: African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12–21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12–21 locus. Methods: We first did a genetic association study and meta-analysis using 17q12–21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12–21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12–21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). Findings: 17q12–21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p<0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12–1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13–1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25–1·46], p<0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08–1·22], p<0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15–1·32], p<0·0001; and for ORMDL3 (β 1·19 [1·12–1·24], p<0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15–1·44], p<0·0001). Interpretation: Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12–21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus.6 month embargo; published: 01 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore