Henry Ford Health Henry Ford Health Scholarly Commons

Allergy Meeting Abstracts

Allergy and Immunology

2-2022

Phenotype-directed Therapy with Mepolizumab for Urban Children with Exacerbation-Prone Asthma

Daniel Jackson

Leonard Bacharier

Peter Gergen

Lisa Gagalis

Miguel Villarreal

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/allergy_mtgabstracts

Recommended Citation

Jackson D, Bacharier L, Gergen P, Gagalis L, Villarreal M, Gill M, Liu A, Gruchalla R, Cohen R, Makhija M, Hershey GK, Sherenian M, Rivera-Spoljaric K, Stokes J, Zoratti E, Teach S, Kattan M, Visness C, Becker P, Gern J, Sorkness C, Busse W, and Altman M. Phenotype-directed Therapy with Mepolizumab for Urban Children with Exacerbation-Prone Asthma. J Allergy Clin Immunol 2022; 149(2):AB146.

This Conference Proceeding is brought to you for free and open access by the Allergy and Immunology at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Allergy Meeting Abstracts by an authorized administrator of Henry Ford Health Scholarly Commons.

Authors

Daniel Jackson, Leonard Bacharier, Peter Gergen, Lisa Gagalis, Miguel Villarreal, Michelle Gill, Andrew Liu, Rebecca Gruchalla, Robin Cohen, Melanie Makhija, Gurjit Khurana Hershey, Michael Sherenian, Katherine Rivera-Spoljaric, Jeffrey Stokes, Edward M. Zoratti, Stephen Teach, Meyer Kattan, Cynthia Visness, Patrice Becker, James Gern, and Matthew Altman

440 Phenotype-directed Therapy with Mepolizumab for Urban Children with Exacerbation-Prone Asthma

Daniel Jackson, MD FAAAAI¹, Leonard Bacharier, MD FAAAAI², Peter Gergen, MD MPH³, Lisa Gagalis³, Miguel Villarreal⁴, Michelle Gill, MD PhD⁵, Andrew Liu, MD FAAAAI⁶, Rebecca Gruchalla, MD PhD FAAAAI7, Robin Cohen8, Melanie Makhija, MD, MS9, Gurjit Khurana Hershey, MD PhD FAAAAI10, Michael Sherenian, MD10, Katherine Rivera-Spoljaric, MD MSCI¹¹, Jeffrey Stokes, MD, MD FAAAAI¹², Edward Zoratti, MD FAAAAI13, Stephen Teach, MD14, Meyer Kattan, MD¹⁵, Cynthia Visness, PhD⁴, Patrice Becker, MD³, James Gern, MD FAAAAI¹, Christine Sorkness, PharmD¹⁶, William Busse, MD FAAAAI¹, Matthew Altman, MD¹⁷; ¹University of Wisconsin-Madison, ²Vanderbilt University, ³NIH/NIAID, ⁴Rho, Inc, ⁵UT Southwestern Medical Center at Dallas, ⁶Children's of Colorado, ⁷Univ. Texas Southwestern Medical Center, ⁸Boston University, ⁹Ann and Robert H Lurie Children, ¹⁰Cincinnati Children's Hospital, ¹¹St. Louis Children's Hospital, ¹²Washington University St Louis, ¹³Henry Ford Hospital, ¹⁴Children's National, ¹⁵Columbia University Medical Center, ¹⁶University of Wisconsin -Madison, ¹⁷University of Washington.

RATIONALE: Asthma exacerbations are common in urban children and have significant short- and long-term consequences. Elevated peripheral blood and airway eosinophils have been identified as risk factors for exacerbations, and therapies targeting these biomarkers reduce exacerbations in adults; however, data on anti-eosinophil treatment in children and adolescents are limited. The primary objective of this study is to determine if phenotype-directed use of mepolizumab reduces the rate of asthma exacerbations in urban children.

METHODS: Urban children 6-17 years of age (n=290) with exacerbation-prone asthma (2+ exacerbations in previous year) and blood eosinophils \geq 150/mm³ were randomized 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo every 4 weeks added to guideline-based care for 1 year. The primary outcome was the number of asthma exacerbations treated with systemic corticosteroids; a comparison of the two treatment groups was evaluated using a negative-binomial model.

RESULTS: Mepolizumab significantly reduced peripheral blood eosinophils (p<0.01) and nasal eosinophils (p<0.01). The rate of asthma exacerbations was significantly lower in mepolizumab (0.96 exacerbations/year) vs. placebo (1.30 exacerbations/year) treated participants [relative risk 0.73 (95% confidence interval 0.56-0.96), p=0.027]. There were no significant differences in secondary outcomes, including time to first exacerbation, lung function, quality of life, or composite asthma severity index (CASI). *Post hoc*, the time to second asthma exacerbation increased significantly with mepolizumab (p=0.02). Adverse events were similar between groups.

CONCLUSIONS: Phenotype-directed therapy with mepolizumab in urban children and adolescents with exacerbation-prone eosinophilic asthma significantly reduced recurrent exacerbations and was well tolerated, but did not impact other asthma outcomes.

441 Distinct Airway Inflammatory Pathways Associated with Asthma Exacerbations are Modulated by Mepolizumab Therapy in Children

Matthew Altman, MD¹, Leonard Bacharier, MD FAAAAI², Miguel Villarreal³, Michelle Gill, MD PhD⁴, Andrew Liu, MD FAAAAI⁵, Rebecca Gruchalla, MD PhD FAAAAI⁶, George O, MD⁷, Rachel Robison, MD, MD FAAAAI⁸, Gurjit Khurana Hershey, MD PhD FAAAAI⁹, Michael Sherenian, MD¹⁰, Katherine Rivera-Spoljaric, MD MSCI¹¹, Jeffrey Stokes, MD, MD FAAAAI12, Edward Zoratti, MD, FAAAAI13, Stephen Teach, MD⁹, Meyer Kattan, MD¹⁴, Stephanie Lovinsky-Desir¹⁵, Cynthia Visness, PhD¹⁶, Patrice Becker, MD¹⁷, Peter Gergen, MD MPH¹⁷, James Gern, MD FAAAAI18, Christine Sorkness, PharmD19, William Busse, MD FAAAAI²⁰, Daniel Jackson, MD FAAAAI¹⁸; ¹University of Washington, ²Vanderbilt University, ³Rho Inc, ⁴UT Southwestern Medical Center at Dallas, ⁵Colorado Children's Hospital, ⁶Univ. Texas Southwestern Medical Center, 7Boston University School of Medicine, 8Ann & Robert H. Lurie Children's Hospital of Chicago, ⁹Children, ¹⁰Cincinnati Children, ¹¹St. Louis Children, ¹²Washington University, ¹³Henry Ford Hospital, ¹⁴Columbia University Medical Center, ¹⁵Columbia University, ¹⁶Rho, Inc, ¹⁷NIH/NIAID, ¹⁸University of Wisconsin-Madison, ¹⁹University of Wisconsin - Madison, ²⁰University of Wisconsin School of Medici.

RATIONALE: Identification of specific airway inflammatory pathways can lead to effective personalized treatment with biologics in asthma and insights to mechanisms of action.

METHODS: 290 urban children with exacerbation-prone asthma and \geq 150/mm³ blood eosinophils were randomized (1:1) to placebo or mepolizumab added to guideline-based care. Nasal lavage samples were collected at randomization and during treatment for RNA-sequencing, and analyzed by cell-deconvolution modular analysis to assess genome-wide expression patterns associated with exacerbation number and effect of treatment.

RESULTS: Mepolizumab significantly reduced the frequency of exacerbations compared to placebo. At randomization, there were no differences in expression between treatment groups; multiple modules were subsequently differentially expressed during mepolizumab but not placebo treatment. Furthermore, expression levels of multiple modules were associated with the exacerbation number during the study, with distinct relationships observed in the placebo and/or mepolizumab groups. Notably, higher expression at randomization of an eosinophil-associated module enriched for Type-2 genes including IL4, IL5, and IL13, was associated with increased exacerbations in placebo (β =0.19, p<0.001), but not mepolizumab-treated children (interaction p<0.01). Furthermore, mepolizumab treatment reduced expression of this module (Fold-change=0.62, p<0.001). In contrast, higher expression at randomization of an eosinophil-associated module enriched for eosinophil activation (e.g. CD9) and mucus hypersecretion (e.g. MUC5AC) genes was associated with exacerbation number in both groups throughout the study (β =0.18, p<0.01) and was unaltered by mepolizumab therapy.

CONCLUSIONS: Multiple distinct airway inflammation patterns were identified associated with exacerbation frequency. These findings identify inflammatory endotypes and indicate likelihood and potential mechanisms of a beneficial clinical response to mepolizumab therapy to prevent exacerbations.