101 research outputs found

    A general reaction-diffusion model of acidity in cancer invasion

    Get PDF
    We model the metabolism and behaviour of a developing cancer tumour in the context of its microenvironment, with the aim of elucidating the consequences of altered energy metabolism. Of particular interest is the Warburg Effect, a widespread preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation for glucose breakdown, as yet incompletely understood. We examine a candidate explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated invasion hypothesis, by generalising a canonical non-linear reaction–diffusion model of acid-mediated tumour invasion to consider additional biological features of potential importance. We apply both numerical methods and a non-standard asymptotic analysis in a travelling wave framework to obtain an explicit understanding of the range of tumour behaviours produced by the model and how fundamental parameters govern the speed and shape of invading tumour waves. Comparison with conclusions drawn under the original system—a special case of our generalised system—allows us to comment on the structural stability and predictive power of the modelling framework

    Evolutionary Processes Acting on Candidate cis-Regulatory Regions in Humans Inferred from Patterns of Polymorphism and Divergence

    Get PDF
    Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution

    Longer First Introns Are a General Property of Eukaryotic Gene Structure

    Get PDF
    While many properties of eukaryotic gene structure are well characterized, differences in the form and function of introns that occur at different positions within a transcript are less well understood. In particular, the dynamics of intron length variation with respect to intron position has received relatively little attention. This study analyzes all available data on intron lengths in GenBank and finds a significant trend of increased length in first introns throughout a wide range of species. This trend was found to be even stronger when using high-confidence gene annotation data for three model organisms (Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster) which show that the first intron in the 5′ UTR is - on average - significantly longer than all downstream introns within a gene. A partial explanation for increased first intron length in A. thaliana is suggested by the increased frequency of certain motifs that are present in first introns. The phenomenon of longer first introns can potentially be used to improve gene prediction software and also to detect errors in existing gene annotations

    A comparative study between mixed-type tumours from human salivary and canine mammary glands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In comparative pathology, canine mammary tumours have special interest because of their similarities with human breast cancer. Mixed tumours are uncommon lesions in the human breast, but they are found most frequently in the mammary gland of the female dogs and in the human salivary glands. The aim of the study was to compare clinical, morphological and immunohistochemical features of human salivary and canine mammary gland mixed tumours, in order to evaluate the latter as an experimental model for salivary gland tumours.</p> <p>Methods</p> <p>Ten examples of each mixed tumour type (human pleomorphic adenoma and carcinomas ex-pleomorphic adenomas and canine mixed tumour and metaplastic carcinoma) were evaluated. First, clinical and morphologic aspects of benign and malignant variants were compared between the species. Then, streptavidin-biotin-peroxidase immunohistochemistry was performed to detect the expression of cytokeratins, vimentin, p63 protein, estrogen receptor, β-catenin, and E-cadherin.</p> <p>Results</p> <p>After standardization, similar age and site distributions were observed in human and canine tumours. Histological similarities were identified in the comparison of the benign lesions as well. Metaplastic carcinomas also resembled general aspects of carcinomas ex-pleomorphic adenomas in morphological evaluation. Additionally, immunohistochemical staining further presented similar antigenic expression between lesions.</p> <p>Conclusion</p> <p>There are many similar features between human salivary and canine mammary gland mixed tumours. This observation is of great relevance for those interested in the study and management of salivary gland tumours, since canine lesions may constitute useful comparative models for their investigations.</p

    Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution

    Get PDF
    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC content and rates of evolution

    A Genome Scan for Positive Selection in Thoroughbred Horses

    Get PDF
    Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (FST). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01), insulin receptor signalling (5.0-fold enrichment; P<0.01) and lipid transport (2.2-fold enrichment; P<0.05) genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05) and focal adhesion pathway (1.9-fold enrichment; P<0.01) genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    A framework for evolutionary systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects.</p> <p>Results</p> <p>Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions <it>in silico</it>. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism.</p> <p>Conclusion</p> <p>EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.</p
    corecore