32 research outputs found

    Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79

    Get PDF
    5 pags., 6 figs.Single-neutron states in the , isotope 79Zn have been populated using the 78Zn(d, p)79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the shell gap. From the analysis of γ-ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a configuration was assigned to a state at 983 keV. Comparison with large-scale-shell-model calculations supports a robust neutron shell-closure for 78Ni. These data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.This work was supported by the European Commission through the Marie Curie Actions Contracts Nos. PIEFGA-2011-30096 (R.O.) and PIEFGA-2008-219175 (J.P.), by the Spanish Ministerio de Ciencia e Innovación under contracts FPA2009-13377-C02 and FPA2011-29854-C04, by the Spanish MEC Consolider – Ingenio 2010, Project No. CDS2007-00042 (CPAN), by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), by the European Union Seventh Framework Programme through ENSAR, contract no. RII3-CT-2010-262010, and by the German BMBF under contracts 05P09PKCI5, 05P12PKFNE, 05P12RDCIA and 06DA9036I. R.O., R.C., J.F.W.L., V.L. and J.F.S. also acknowledge support from STFC, Grant Nos. PP/F000944/1, ST/F007590/1, and ST/J000183/2

    Blurring the boundaries between ion sources:The application of the RILIS inside a FEBIAD type ion source at ISOLDE

    No full text
    For the first time, the laser resonance photo-ionization technique has been applied inside a FEBIAD-type ion source at an ISOL facility. This was achieved by combining the ISOLDE RILIS with the ISOLDE variant of the FEBIAD ion source (the VADIS) in a series of off-line and on-line tests at CERN. The immediate applications of these developments include the coupling of the RILIS with molten targets at ISOLDE and the introduction of two new modes of FEBIAD operation: an element selective RILIS mode and a RILIS + VADIS mode for increased efficiency compared to VADIS mode operation alone. This functionality has been demonstrated off-line for gallium and barium and on-line for mercury and cadmium. Following this work, the RILIS mode of operation was successfully applied on-line for the study of nuclear ground state and isomer properties of mercury isotopes by in-source resonance ionization laser spectroscopy. The results from the first studies of the new operational modes, of what has been termed the Versatile Arc Discharge and Laser Ion Source (VADLIS), are presented and possible directions for future developments are outlined
    corecore