290 research outputs found

    Cell reprogramming shapes the mitochondrial DNA landscape.

    Get PDF
    Individual induced pluripotent stem cells (iPSCs) show considerable phenotypic heterogeneity, but the reasons for this are not fully understood. Comprehensively analysing the mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show that most age-related fibroblast mtDNA mutations are lost during reprogramming. However, iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62 Ă— 10-5/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA molecules, favouring non-synonymous protein-coding and tRNA variants, including known disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-clones derived from the original donor during differentiation, with mtDNA variants influencing the expression of key genes involved in mitochondrial metabolism and epidermal cell differentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human iPSCs and should be considered when using reprogrammed cells experimentally or as a therapy

    Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters.</p> <p>Results</p> <p>In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters <it>C. virginica, C. gigas</it>, and <it>C. hongkongensis</it>. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes.</p> <p>Conclusions</p> <p>Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.</p

    Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata

    Full text link
    The Portuguese oyster Crassostrea angulata (Lamarck, 1819) was long assumed to be native to the northeastern Atlantic, however, a number of lines of evidence now indicate that it is a close relative, or identical, to the Asian Pacific oyster C. gigas (Thunberg, 1793). Three hypotheses have been proposed to explain how this strikingly disjunct geographic distribution may have come about: ancient vicariance events, recent anthropogenic introduction to Asia and recent anthropogenic introduction to Europe. We have performed a molecular phylogenetic analysis of C. angulata based on mitochondrial DNA sequence data for a 579-nucleotide fragment of cytochrome oxidase I. Our results show that Portuguese oyster haplotypes cluster robustly within a clade of Asian congeners and are closely related, but not identical, to C. gigas from Japan. The mitochondrial data are the first to show that Portuguese oysters are genetically distinct from geographically representative samples of Japanese Pacific oysters. Our phylogenetic analyses are consistent with a recent introduction of C. angulata to Europe either from a non-Japanese Asian source population or from a subsequently displaced Japanese source population. Genetic characterization of Pacific oysters throughout their Asian range is necessary to fully reveal the phylogenetic relationships among Portuguese and Pacific oysters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42028/1/227-131-3-497_81310497.pd

    RBPJ Mutations Identified in Two Families Affected by Adams-Oliver Syndrome

    Get PDF
    Through exome resequencing, we identified two unique mutations in recombination signal binding protein for immunoglobulin kappa J (RBPJ) in two independent families affected by Adams-Oliver syndrome (AOS), a rare multiple-malformation disorder consisting primarily of aplasia cutis congenita of the vertex scalp and transverse terminal limb defects. These identified mutations link RBPJ, the primary transcriptional regulator for the Notch pathway, with AOS, a human genetic disorder. Functional assays confirmed impaired DNA binding of mutated RBPJ, placing it among other notch-pathway proteins altered in human genetic syndromes

    X-ray emitting young stars in the Orion Nebula

    Get PDF
    The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure. We detect 1075 X-ray sources: 91% are spatially associated with known stellar members of the cluster, and 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main sequence stellar population. We examine here the X-ray properties of Orion young stars as a function of mass. Results include: (a) the discovery of rapid variability in the O9.5 31 M_o star \theta^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small wind shocks; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G- through M-type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the `saturation' level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T >= 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main sequence very low mass objects showing high flaring levels and a decline in magnetic activity as they evolve into L- and T-type brown dwarfs.Comment: 82 pages, 16 figures, 6 tables. To appear in the Astrophysical Journal. For a version with high quality images and electronic tables, see ftp://ftp.astro.psu.edu/pub/edf/orion1
    • …
    corecore