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Cell reprogramming shapes the mitochondrial DNA
landscape
Wei Wei1,2, Daniel J. Gaffney 3,4 & Patrick F. Chinnery 1,2✉

Individual induced pluripotent stem cells (iPSCs) show considerable phenotypic hetero-

geneity, but the reasons for this are not fully understood. Comprehensively analysing the

mitochondrial genome (mtDNA) in 146 iPSC and fibroblast lines from 151 donors, we show

that most age-related fibroblast mtDNA mutations are lost during reprogramming. However,

iPSC-specific mutations are seen in 76.6% (108/141) of iPSC lines at a mutation rate of 8.62

× 10−5/base pair. The mutations observed in iPSC lines affect a higher proportion of mtDNA

molecules, favouring non-synonymous protein-coding and tRNA variants, including known

disease-causing mutations. Analysing 11,538 single cells shows stable heteroplasmy in sub-

clones derived from the original donor during differentiation, with mtDNA variants influencing

the expression of key genes involved in mitochondrial metabolism and epidermal cell dif-

ferentiation. Thus, the dynamic mtDNA landscape contributes to the heterogeneity of human

iPSCs and should be considered when using reprogrammed cells experimentally or as a

therapy.
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There is a growing interest in the use of induced pluripotent
stem cells (iPSCs) to model human disease mechanisms
and in cell-based therapies, but iPSCs derived from the

same tissue show considerable phenotypic heterogeneity that can
affect their capacity to differentiate into organ-specific lineages.
Bulk and single-cell analysis has shown common genetic variation
contributes to differences in gene expression profiles between
donors1–3, but the majority of the variation remains unexplained.
Even iPSCs derived from the same donor cell line show pheno-
typic differences that are poorly understood. However, indepen-
dently differentiating the same cell line several times reproduces
similar cell phenotypes4, implicating cell-intrinsic factors driving
the heterogeneity, rather than the external environment.

Although there has been considerable effort describing nuclear
genetic and epigenetic differences that arise during reprogram-
ming, the 16.5 Kb mitochondrial genome (mtDNA) remains
largely uncharacterised. mtDNA codes for 13 essential peptide
components of the oxidative phosphorylation systems, and 2
rRNAs required for intra-mitochondrial protein synthesis5. Most
human cells contain >1000 copies of mtDNA, and deep
sequencing has shown that most humans harbour a mixed
population of mitochondrial genomes (heteroplasmy)6. mtDNA
mutations can arise de novo during life or be inherited down the
maternal line, and specific mtDNA variants compromise oxida-
tive metabolism and the synthesis of adenosine triphosphate
(ATP). High percentage levels of specific mtDNA mutations
cause severe multi-system metabolic diseases that affect ~1 in
8000 humans, but they also contribute to the pathology of
common age-related disorders, including Parkinson’s disease5.
mtDNA mutations influence canonical cell signalling pathways,
reactive oxygen species production, amino acid metabolism and
cell growth through indirect effects on nuclear gene
transcription7–10.

mtDNA mutations also accumulate in somatic tissues
throughout life, raising the possibility that mtDNA variation
contributes to the molecular heterogeneity of human iPSCs. In
keeping with this, several small studies have described mtDNA
variants present in iPSC lines that were not detected in parental
fibroblast lines, with some having detrimental effects on
metabolism11, including mitochondrial respiration in derived
cardiomyocytes12. However, with <25 donors studied to date, the
landscape of mtDNA variation in human iPSCs poorly
understood13.

In this work, we analysed high-depth mtDNA sequences in 146
iPSC lines as part of the Human-Induced Pluripotent Stem Cells
Initiative (HipSci). We show extreme mtDNA diversity, with
selection favouring some variants during reprogramming. Single-
cell analysis shows that mtDNA variants define sub-clones that
modulate gene expression within iPSCs and subsequent differ-
entiated cell lineages.

Results
Data collection and quality control. Initially, we analysed high-
depth mtDNA sequences derived from whole-genome sequence
(WGS) data on 146 iPSC and 151 fibroblast lines obtained from
151 different donors aged 27–77 years recalled through the NIHR
BioResource as part of the Human Induced Pluripotent Stem
Cells Initiative (HipSci, http://www.hipsci.org/). After sample
quality control (QC), 141 iPSC lines and 146 fibroblast lines were
included in the analysis (see 'Methods'), with one iPSC line from
25 donors and 2 iPSC lines from 58 donors included (Fig. 1a,
Supplementary Fig. 1a and Supplementary Data 1). The average
WGS depth was 44-fold (s.d.= 9-fold, and mtDNA depth was
1824-fold (s.d.= 2249-fold) (Supplementary Fig. 2a, i, j). There
was no detectable difference in the depth of mtDNA sequencing

between the fibroblasts and their derived iPSCs (median depth in
fibroblasts 777×, median depth in iPSCs 887×, P= 0.907, paired
Wilcoxon test) (Supplementary Fig. 2j), consistent with similar
numbers of cells sequenced between each fibroblast and iPSC
pair. First, we identified high-quality mtDNA variants relative to
the revised Cambridge Reference Sequence (rCRS)14, including
variants in mixed proportions in the bulk sequencing (hetero-
plasmic variants). We filtered out calls likely to be due to sys-
tematic errors, including nuclear-encoded mitochondrial DNA
sequences (NUMTs) and length variants flanking polynucleotide
tracts (see 'Methods'). We then determined the frequency dis-
tribution of major population-specific mtDNA haplogroups
(macro-haplogroups) (Supplementary Fig. 1b), and compared
this to published data15 (P < 2.2 × 10−16, R2= 0.99, Pearson’s
correlation test), confirming that the vast majority of donors were
representative of the United Kingdom population. In total, 143 of
the 146 donors (98%) belonged to one of the macro-haplogroups
H, I, J, K, T, U, V, or W. As a further QC step, we only included
heteroplasmic variants with bulk heteroplasmy allele fractions
(HFs) between 2 and 98% (see 'Methods').

Heteroplasmy calling was validated using bulk RNA-
sequencing (RNA-seq) data generated from 102 iPSCs (see
'Methods'). As expected, the depth of RNA-seq was less uniform
than WGS (Supplementary Fig. 2b). However, the average depth
of mtDNA was deep sufficient (4508-fold, s.d.= 2946-fold) to
detect low-level bulk heteroplasmic variants. The HFs of
heteroplasmic variants detected by both techniques were strongly
correlated (P= 6.75 × 10−120, R2= 0.94, Pearson’s correlation
test) (Supplementary Fig. 2d).

Distinct spectrum of mtDNA mutations in fibroblasts with
age. In total, 143 (98%) of 146 fibroblast lines carried at least one
heteroplasmy on bulk analysis (HF >= 2%). The mean number of
heteroplasmic mtDNA variants per fibroblast line was 8
(s.d.= 4), with a greater mean number in fibroblasts from older
individuals (N= 146, P= 4.92 × 10−3, coefficient estimate=
0.10, s.d.= 0.034, linear regression model) (Figs. 1b and 2a, b),
where the correlation was driven in part by variants in the D-loop
region (P= 9.41 × 10−5, coefficient estimate= 0.04, s.d.= 0.010,
linear regression model) (Fig. 2c). Overall, the mean HF per
fibroblast line was 9.10% (s.d.= 7.40%). The mean HF per
fibroblast line of the D-loop variants increased with the age of the
donor (P= 8.49 × 10−3, coefficient estimate= 0.025, s.d.= 0.009,
linear regression model), but there was a neither detectable cor-
relation with age seen for the other genomic regions nor across
the whole mtDNA genome (P > 0.05, linear regression model)
(Fig. 2d, e, f).

Eight heteroplasmic variants were present in >5% of the
fibroblast lines (Figs. 1b and 2g, h). m.414G was the most
common recurrent mutation (28 fibroblasts lines, 19.2%), with
the proportion of individuals carrying this variant increasing
with age (Fig. 2i) as noted before16. The previously observed
m.2623G and m.13369C variants13 were also seen in 12.3%,
despite being exceptionally rare in blood from the same
population6. These mutations occurred on different
mtDNA haplogroup backgrounds, indicating recurrent muta-
tion events.

Each mutation initially affects a single mtDNA molecule, but to
be detected by our WGS pipeline, at least 2% of molecules must
be affected in the bulk DNA sample (where 2% is the HF
threshold we used to detect heteroplasmic variants, see 'Meth-
ods'). Thus, the mutations we observed are a consequence of the
original mutation event followed by subsequent copying (clonal
expansion) and propagation of the variant into many daughter
cells. Although it is conceivable that some high-level
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Fig. 1 mtDNA heteroplasmic variants detected from whole-genome sequences. a Summary of bulk whole-genome (WGS), bulk RNA and single-cell RNA
(scRNA) sequencing data analysed in this study. Colour represents the heterogeneity of cell populations under WGS and bulk RNA-seq, and three different
cell stages under scRNAseq, where mesendo=mesoderm, and defendo= definitive endoderm. b Heteroplasmic variants detected from WGS. Circos plot
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resolution of mtDNA D-loop region. Plots from top to bottom: (1) mtDNA position; (2) decrease shift variants; (3) D-loop regions; (4) increase shift
variants; (2) & (4) vertical axes represent heteroplasmic shifts.
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heteroplasmic variants could reflect recurrent mutations in the
same individual, this seems unlikely because the majority (64.5%)
of heteroplasmic variants were seen in only one fibroblast line.
Clonal expansion must therefore be playing a key role in
generating the higher heteroplasmy values seen in fibroblasts
from older subjects, and explain the correlation between the HF
and age for m.414G (Fig. 2i).

Cell reprogramming changes the spectrum of mtDNA muta-
tions. Next, we carried out a similar analysis of high-depth
mtDNA sequences in 141 iPSCs derived from 83 of the original
fibroblast lines (Fig. 1a, Supplementary Fig. 1a and Supplemen-
tary Data 1). In all, 130 (92%) of 141 iPSCs carried at least one
heteroplasmy (HF >= 2%). The mean number of heteroplasmic
variants per iPSC line was 3 (s.d.= 2), with a mean HF of 20.7%
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(s.d.= 17.4%) (Figs. 1b and 2a, d, g). In contrast to the skin
fibroblasts, there was no detectable correlation between the age of
the individual at the time of the skin biopsy and the mean
number of heteroplasmic variants. Although there was a trend
between donors’ age and average HF per person across the whole
mtDNA genome, our observations did not provide statistical
support for this trend (Fig. 2e and Supplementary Fig. 3a).

Overall, the iPSC lines contained less heteroplasmic variants
than their fibroblast parental lines (P= 6.38 × 10−20, paired
Wilcoxon test) (Fig. 2a and Supplementary Fig. 3b). In total,
15.7% (161/1028) of the heteroplasmic variants observed in the
fibroblasts were ‘shared’ with at least one of their derived iPSC
lines, and 84.3% (867/1028) of the variants present were not
detected at HFs >= 2% in the iPSCs (‘lost’ mutations)
(P < 2.2 × 10−16, 95% CI 0.213–0.262, exact binomial test) (Fig. 2j,
k). By contrast, 62.6% (270/431) of the variants present in 76.6%
(108/141) of iPSC lines were not detected at HF >= 2% in the
donor fibroblasts (classified here as ‘iPSC-specific’ mutations)
(Fig. 2j), making a greater contribution to the mtDNA landscape
in iPSCs than shared variants (P= 4.69 × 10−6, 95%
CI= 0.564–0.660, exact binomial test). There was no detectable
difference in either the mean HF, the mean number of
heteroplasmic variants, or the mean number of iPSC-specific
mutations in iPSC lines analysed at different passages (P= 1,
pairwise Wilcoxon test) (Supplementary Figs. 1c and 4).

Next, we compared the mutation frequency across different
mtDNA regions. In fibroblasts, the D-loop had a higher mutation
frequency than expected by chance, averaging across the whole
mtDNA (mean= 1.04 × 10−3/base pair, D-loop vs. expected
P= 2.03 × 10−16, 95% CI 1.84–2.63, Fisher’s exact test). The
D-loop had a higher mutation frequency than all of the other
mtDNA regions (D-loop vs. rest of regions P < 2.2 × 10−16, 95%
CI 1.95–2.71, Fisher’s exact test) (Fig. 2g). Heteroplasmic variants
were also enriched in the two rRNA genes (mean= 7.45 × 10−4/
base pair, rRNA vs. expected P= 8.54 × 10−10, 95% CI 1.37–1.83,
Fisher’s exact test). By contrast, in the iPSCs, the mutation
frequency in the D-loop was lower than the rest of the mtDNA
(P= 3.55 × 10−6, 95% CI 1.71–4.54, Fisher’s exact test) (Fig. 2g),
and overall, there was a higher mutation frequency for non-
synonymous variants (P= 1.11 × 10−3, 95% CI 0.54–0.86, Fish-
er’s exact test) (Fig. 2g). In keeping with this, the ratio of non-
synonymous (NS) to synonymous (SS) coding region variants was
greater for the heteroplasmic variants in iPSCs than the
heteroplasmic variants in fibroblasts (iPSCs: 4.45, fibroblast:
3.52), and significantly higher than previously reported in blood6

(NS/SS in blood 1.30, fibroblast vs blood P < 2.2 × 10−16, iPSC vs
blood P= 2.28 × 10−14, Fisher’s exact test) (Fig. 2l). Taken
together, these findings indicate that cell reprogramming shaped

the spectrum of mtDNA heteroplasmic variants seen in the
fibroblast lines. The change in profile was largely driven by the
loss of variants from the fibroblasts and iPSC-specific variants
appearing in the iPSC lines (Fig. 3a) with the greatest NS/SS ratio
(Fig. 2l).

Mechanistic insights from two iPSCs from the same donor. To
gain further insight into the mechanisms, we looked at the 116
iPSCs where two lines had been derived from 58 fibroblast
donors. Only 8.3% (36/436) of the unique heteroplasmic variants
present in each donor fibroblast were detected in both iPSC lines
(shared both); 11.0% (49/436) were present in one of the two
iPSC lines (shared one/lost one); and 80.6% (351/436) were not
detected in either iPSC line (lost from both). By contrast, 78.0%
(184/236) of the unique heteroplasmic variants in each donor
iPSC line were only present in one of the two iPSCs (iPSC-specific
one) and 6.8% (16/236) in both iPSCs (iPSC-specific both)
(Fig. 2k). Thus, the vast majority of mutations present in the
fibroblast lines were lost on reprogramming, and the iPSC-
specific mutations most likely occurred independently each time a
fibroblast line was reprogrammed. To determine whether some of
the iPSC-specific mutations were actually present in the fibro-
blasts but below our detection threshold (HF < 2%), we re-
analysed the fibroblast data without a lower cut-off filter for HFs.
This showed that a minority (14.8%; 40/270) of the previously
classified iPSC-specific variants were actually present in the ori-
ginal fibroblast line at HF < 2%. Factoring this into account, the
iPSC-specific mutation rate was 8.62 × 10−5 per base pair per
genome per reprogramming (1.87 × 10−6 per base pair per
mtDNA molecule normalising for the average number of mtDNA
molecules per cell), which is a conservative estimate based
on mutations with a HF >=2% in the iPSCs and a HF > 0 in their
matched fibroblast cell lines. Finally, to determine whether our
initial detection threshold had a major impact on the measured
iPSC-specific mutation rate, we decreased the detection threshold
in iPSCs by 0.5% increments. This showed the anticipated
increased mutation rate, but only by approximately fourfold,
indicating that our approach is reliable to within one order of
magnitude (Supplementary Fig. 3c).

The rapid segregation of mtDNA variants we observed between
fibroblasts and iPSCs is consistent with a bottleneck during
reprogramming. This resembles observations during germ cell
development, where a reduction in cellular mtDNA content
contributes to the rapid segregation of heteroplasmic mtDNA
variants17,18. A similar genetic bottleneck effect could explain
why variants not detectable in fibroblasts become detectable in
iPSCs. However, given the inherent inefficiency of cellular
reprogramming, an alternative explanation is that there is a

Fig. 2 Characteristics of mtDNA heteroplasmic variants detected through the bulk analysis of 146 fibroblast cell lines and 141 derived iPSC lines.
a Distribution of the mean number of heteroplasmies defined in fibroblast and iPS cell lines. b Correlation of the mean number of heteroplasmies per
fibroblast cell line with the donor’s age. Shaded regions show mean ± standard deviation (s.d.). c Correlation of the mean number of heteroplasmies
per fibroblast cell line in each mtDNA region with the donor’s age. Shaded regions show mean ± s.d. d Distribution of the average heteroplasmy fraction
(HF) in fibroblast and iPS cell lines. e Correlation of the average HF per fibroblast cell line with the donor’s age. Shaded regions show mean ± s.d. f
Correlation of the average HF per fibroblast cell line in each mtDNA region with the donor’s age. Shaded regions show mean ± s.d. g Heteroplasmies
defined in fibroblast (top) and iPS cell lines (bottom). HFs are shown on the left y axis. mtDNA regions covered by different colours. The depth of the
shading represents the mutation rate of each mtDNA region (shown on the right side of y axis). Three fibroblast-specific mutations are highlighted in red
rectangles. The regions were significantly enriched mutations than expected by chance were labelled by asterisks. h Frequency of specific mutations in
fibroblast and iPS cell lines. i The fibroblast-specific mutation 414G was associated with the donor’s age. j Distribution of heteroplasmies defined in
fibroblast and iPS cell lines. k Distribution of heteroplasmies defined in fibroblast and iPS cell lines, two iPSC lines derived from the same fibroblast cell line
are shown separately. l Ratio of non-synonymous/synonymous variants (NS/SS) observed in fibroblasts, iPSCs and iPSC-specific variants. m Distribution
of the mtDNA copy number in fibroblast and iPS cell lines. n Distribution of the heteroplasmy fraction in fibroblast and iPS cell lines. Red lines show the
mean HFs within each dataset. a, d P values were calculated using two-sided Wilcoxon test. Source data are provided as a Source Data file. b, c, f P values
were calculated using linear regression model. g P values were calculated using two-sided Fisher’s exact test.
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‘cellular bottleneck’, where only a small proportion of the
fibroblasts contribute to the iPSC cell population. In keeping
with this, the average amount of mtDNA per cell was greater in
iPSCs than in the matched fibroblast lines (P= 0.08, paired
Wilcoxon test) (Fig. 2m), although we cannot exclude the
possibility of a reduction in cellular mtDNA content at precisely
the time of reprogramming. Of note, the cell lines were not
physically sub-cloned during the iPSC generation.

Changes in heteroplasmy fraction (HF) during reprogram-
ming. As expected, the HF for shared heteroplasmic variants
found in both the fibroblasts and iPSCs lines was greater than HF
seen for lost and iPSC-specific heteroplasmic variants (shared vs
lost in fibroblasts P= 4.75 × 10−14, shared vs iPSC-specific in
iPSCs P < 2.2 × 10−16, Wilcoxon rank-sum test) (Fig. 2n), in
keeping with a genetic bottleneck effect. Next, we studied the
change in HF for each variant during reprogramming, normal-
ising each shift to the original HF in the founder fibroblast line
(Fig. 3a) (see 'Methods'). The normalisation is important because
the simple difference in HF between the fibroblast and iPSC lines
does not reflect the magnitude of the fold change in heteroplasmy
(e.g., doubling the HF from 2–4% would give the same absolute
change as 50–52%). In addition, the difference between the ori-
ginal fibroblast line and the iPSC is limited by 0 and 100%, which
is particularly important for low-level heteroplasmic variants6.
Subsequent analysis was therefore performed on log2 ratio of HF
between the iPSC line and the original fibroblast line, which we
termed the ‘heteroplasmic shift’ (HS). Note that this correction
reflects the fold change in HF, but the size of this change is
influenced by the initial HF.

Despite the overall loss of heteroplasmic variants (Figs. 2j and
3a), the mean HF was significantly higher in iPSC lines than the
fibroblast lines (individual fibroblast-iPSC pairs P= 3.32 × 10−10,
paired Wilcoxon test) (Fig. 2d). Of 161 shared heteroplasmic
variants, 138 increased and only 23 decreased on reprogramming
(P < 2.2 × 10−16, 95% CI= 0.793–0.907, exact binomial test)
(Fig. 3a). In total, 12 variants observed in 9 iPSC lines showed
extreme increase shifts (normalised shift values >6) lying outside
the overall distribution. Five of these 12 variants were non-
synonymous variants, and none was in the D-loop (Fig. 3a).
Consistent with the previously observed loss of mtDNA
heteroplasmic variants, in all mtDNA regions, HS were more
likely to be negative than positive on reprogramming (Fig. 3b and
Supplementary Data 2). Next, we compared the HS between
different mtDNA regions. The HS for D-loop was more likely to
decrease than other regions (2.24-fold decrease, P= 9.48 × 10−5,
Fisher’s exact test), and the HSs for non-synonymous and tRNA
variants were more likely to increase than other regions (non-
synonymous 1.43-fold increase, P= 3.90 × 10−3; tRNA 1.61-fold
increase, P= 4.12 × 10−2, Fisher’s exact test) (Fig. 3c and
Supplementary Data 2).

To explore the possibility that confounding variables explained
these trends, we modelled the direction of HS (increase shift/
decrease shift) of a variant as a function of the age of the
individual when the skin biopsy was taken, the HF in the original
fibroblast line, the mitochondrial genome location, and the
macro-haplogroup of the donor (see 'Methods'). Variants in
the D-loop region were less likely to increase than variants
in non-synonymous and tRNA regions (non-synonymous
P= 1.15 × 10−3, coefficient estimate= 0.78, s.d.= 0.24, tRNA
P= 4.93 × 10−3, coefficient estimate= 0.89, s.d.= 0.32, logistic
regression model) (Fig. 3a, c). Thus, mtDNA heteroplasmy
fraction is modified during reprogramming, with heteroplasmy
tending to increase or decrease in specific regions of the mtDNA,
but with an overall increase in the level of heteroplasmy in iPSCs.

The preferential loss of D-loop variants and propagation of
non-synonymous and tRNA variants are the complete opposite of
what is seen during germline transmission6. Thus, tissue or
context-specific factors influence the segregation of mtDNA
heteroplasmy in humans, implying a more complex mechanism
than simply the effect of the variants on oxidative phosphoryla-
tion and ATP synthesis. This is in keeping with work in mice,
where pluripotent cells modulate heteroplasmy in a different way
to mouse embryonic fibroblasts (MEFs), and reprogramming
MEFs to iPSCs recapitulates the pluripotent cell behaviour19. For
the D-loop, one potential explanation involves the selection
against variants that compromise mtDNA replication, given the
increased mtDNA content seen in iPSC lines. To gain insight into
the selection of the D-loop region, we further defined the
heteroplasmic variants in different D-loop regions (Fig. 1c).
Variants in the origin of heavy-strand replication (MT-OHR)
were more likely to be lost than expected when compared to
the average across D-loop region (P= 8.76 × 10−5, Fisher’s
exact test), particularly in L-strand promoter (MT-LSP)
(P= 7.26 × 10−7, Fisher’s exact test) which generates the
RNA–primer required for DNA synthesis and includes the age-
related mutation m.414G. By contrast, iPSC-specific mutations
were enriched in MT-OHR (P= 7.59 × 10−3, Fisher’s exact test),
particularly in MT-CSB1 (P= 6.28 × 10−3, Fisher’s exact test).
Although it is difficult to explain all of these patterns at present,
their distribution is likely to reflect the function of D-loop
structures.

Potential pathogenic mutations. Of the 12 known pathogenic
mtDNA mutations present in 9 donor fibroblast lines (Figs. 1b
and 3d), five were lost during reprogramming, including two
fibroblast lines where the mutations (m3460G> A and
m.3697G> A) were not present in 2 iPSC lines derived from each
donor. By contrast, m.3243A > G and m.3697G > A were found in
two separate fibroblast lines, shared by both of the iPSC lines
derived from each donor, and in each case with higher HF.

Five iPSC-specific pathogenic mutations were not seen in the
fibroblast lines from four donors, giving a iPSC-specific
pathogenic mutation rate of 2.14 × 10−6 per base pair per
genome (95% CI 7.88 × 10−7–5.31 × 10−6 per base per genome)
(6.82 × 10−8 per base pair per mtDNA molecule normalising for
the average number of mtDNA molecules per cell). Accounting
for differences in the definition of a pathogenic mutation, the
iPSC-specific mutation rate during iPSC reprogramming was
~5.9-fold greater than estimated for the germ line6.

Reprogramming shapes the mtDNA mutational signature.
Building on previous observations in cancer and the germ
line6,20,21, next we determined the mutational signature of the
heteroplasmic mtDNA variants. As expected, in fibroblasts, C > T
and T > C substitutions were the most common. We did not
observe the L-strand T > C mutation bias seen in whole blood and
18 cancer types20 (Fig. 3e, f), however, the same pattern has been
noted before in melanoma22 and the germline variants23. Unlike
the nuclear genome24, mtDNA did not show the signature of
ultraviolet light-induced DNA damage, implying an alternative
mechanism of mutagenesis and/or additional factors shaping the
trinucleotide signature over time. By contrast, the iPSCs had a
distinct trinucleotide mutational signature (iPSCs vs fibroblasts
P= 3.66 × 10−42, Stouffer’s method for combining Fisher P
values), with more C > A, C > G, T > A variants (P= 9.47 × 10−7,
95% CI 0.036–0.304, P= 3.00 × 10−30, 95% CI 0.020–0.088,
P= 0.03, 95% CI 0.193–0.968, Fisher exact test) and less T > C
variants (P= 4.07 × 10−26, 95% CI 2.81–4.73, Fisher exact test)
than donor fibroblasts (Fig. 3e). Surprisingly, the C > A
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substitutions were preferentially seen on the L-strand in iPSCs
(observed vs. expected P= 5.36 × 10−3, 95% CI 1.725–Inf, Fisher
exact test), and C > G substitutions were strongly enriched on the
H-strand (observed vs. expected P= 1.35 × 10−7, 95% CI
6.68 × 10−4–0.18, Fisher exact test) (Fig. 3e). The L-strand C > T
substitution bias was prominent in the D-loop region, which
showed an opposite trend to fibroblasts and cancer somatic
mutations (Fig. 3f and Supplementary Fig. 5a)20. iPSC-specific
heteroplasmic variants made the greatest contribution to the dis-
tinct iPSC mutational signature (iPSC-specific vs lost:
P= 1.18 × 10−12; iPSC-specific vs shared: P= 0.01, Stouffer’s
method for combining Fisher P values), with the shared and lost
variants having the similar signature profile (P= 0.06, Stouffer’s
method for combining Fisher P values) (Fig. 3e and Supplemen-
tary Fig. 5b). Thus, cell reprogramming shapes the overall muta-
tional signature in iPSCs. The pattern of iPSC-specific mutations
resembles the signature seen when there is disordered mismatch
repair (MMR)24 (Fig. 3g), although the absence of MMR within
mitochondria implicates alternative mechanisms.

mtDNA variants detected using single-cell RNA sequencing.
We detected the mtDNA variants in 36,044 single-cell tran-
scriptomes (scRNAseq) from 125 donors at three canonical stages
of endoderm differentiation: iPSCs (n= 9661), mesoderm
(mesendo, n= 10,199), definitive endoderm (defendo, n= 9906)
and undefined cells (n= 6278)3 (see 'Methods'). We studied
11,538 single cells (iPSCs 2711, mesendo 3402, defendo 3796 and
undefined 1629) from 60 donors. The bulk WGS data of 60
progenitor fibroblast cells were also available and included in our
analysis above. In total, 6288 of 11,538 single cells from 36 iPSC
lines also had the bulk WGS data from the same iPSC lines. In all,
5607 cells from 30 iPSC lines had matched bulk RNA-sequencing
data (Fig. 1a, Supplementary Fig. 1d and Supplementary Data 1),
allowing several cross-validation steps.

The average depth of each mtDNA gene and rRNA was 66 to
1144-fold (Fig. 4a and Supplementary Fig. 2c). After excluding
regions with sequencing depth below 200x, we detected 173,136
variants (HF > 2%) in 11,538 single cells across 11,704 bp
(2463 bp of rRNAs and 9241 bp of coding regions) (Fig. 4a, b
shows the data of 9909 cells from the three cell stages). In total,
139,778 variants were homoplasmic (HF > 95%). All of the
observed homoplasmic variants were also detected in their
matched fibroblast cells by WGS. In all, 1989 of the 139,778
homoplasmic variants (1.4%) were heteroplasmic in their
matched fibroblast cells, with the HF increasing to >95% in the
single cells. The same variants were also seen as homoplasmic in
bulk iPSC WGS data, confirming the high quality of variants in
scRNAseq. In total, 28,840 heteroplasmic variants (2%<HF <
=95%) we observed in 9439 cells (81.8%) were heteroplasmic or
absent in their matched fibroblast cells, and 4518 heteroplasmic
variants were homoplasmic in their matched fibroblast cells. A
large proportion of the heteroplasmic variants (65.1%) were not
seen in their matched fibroblast lines (detected HF= 0 in
fibroblast cells), and only 6284 variants (21.3%) were detected
in the matched fibroblast cells (Fig. 4b shows the data of 9909
cells from the three cell stages).

In order to validate the scRNAseq variant calling, we calculated
the average heteroplasmy level for each variant across all the cells
from the same donor (referred to as ‘pseudo-bulk’) (see
'Methods'). Overall, 1647 pseudo-bulk variants (HF > 0 at the
pseudo-bulk level) were observed across the whole dataset
(Fig. 4a). There was a high concordance between heteroplasmic
level estimates from pseudo-bulk variants and WGS from the
same iPSC line (scRNAseq vs WGS P= 3.18 × 10−28, R2= 0.94,
Pearson’s correlation test) (Supplementary Fig. 2e). Heteroplasmy

levels were also consistent with the variants detected in true bulk
RNA-seq (scRNAseq vs bulk RNA-seq P= 5.04 × 10−29,
R2= 0.86, Pearson’s correlation test) (Supplementary Fig. 2f),
further validating the variants detected by scRNAseq.

Stable heteroplasmy in clones influence gene expression. Next,
we studied mtDNA heteroplasmy levels during differentiation at
the single-cell level. We only included the cell lines where at least
20 cells were available at each stage of development to minimise
sampling bias. We estimated the proportion of cells that carried
the same variant within each cell line, the mean HF per variant
within each cell line, and pseudo-bulk HF at all three stages
(Fig. 4c, d, e). In all, 977 of the variants observed in the pseudo-
bulk analysis were present in at least one of three cell stages in 24
cell lines. The single-cell analysis allowed us to compare different
situations not visible in the bulk variant analysis (Fig. 5a). For
example, a variant present at 50% HF in a bulk analysis could be
because (1) all of the cells harboured the variant at a HF of 50%,
(2) only 50% of the cells contain the variant at a HF of 100%, or
(3) a mix of these two extremes (1) and (2). In our analysis, the
majority of variants only occurred in a small proportion of the
cells, with only 3.9, 3.8 and 3.5% of variants present in more than
half of the cells in iPSC, mesendo and defendo stages (Fig. 4c).

The distribution of mean HF peaked at <2% (Fig. 4d), with a
similar distribution at each developmental stage, matched by the
pseudo-bulk distribution (Fig. 4e), implying a minimal change in
heteroplasmy levels during differentiation. Next, we binned the
proportion of cells carrying the same variant within the same line
(Fig. 5b) and estimated the mutation frequency in each bin. The
mutational frequencies were consistent between the three cell
stages. Again, in keeping with stable heteroplasmy levels during
differentiation. Finally, the HF for each individual mutation was
highly correlated across all three stages (iPSC vs mesendo
P < 2.2 × 10−16 R2= 0.90, iPSC vs defendo P < 2.2 × 10−16

R2= 0.92, iPSC vs mesendo P < 2.2 × 10−16 R2= 0.88, Pearson’s
correlation test) (Fig. 5c), with a tighter correlation for mutations
found in a higher percentage of the cells. None of the mutations
shared by >2% of cells in the iPSC population was lost during
differentiation.

Given that most of the variants were rare and only seen in the
minority of cells, we went on to identify discrete cell lineages
within each cell line. Single cells were separated according to their
origins by a Uniform Manifold Approximation Projection
(UMAP)25 based solely on the mtDNA heteroplasmic variant
data (Fig. 6a), revealing their clonal origin (Fig. 6b, c, d and
Supplementary Fig. 6a) (see 'Methods'). Within 27 shared variants
between the original fibroblast lines and the single cells, 59.3%
(16/27) of variants were also present in the vast majority (>95%)
of single cells at later stages of differentiation, reflecting the
ancestral lineage. Overall, 74.1% (20 of 27) variants were present
>50% of single cells. There was no detectable difference between
three cell stages (P values >0.05, Kolmogorov–Smirnov test)
(Fig. 5d). The number of variants present in the coding region
and rRNAs alone allowed lineage tracing, and each cell line
showed unique lineage profiles based on their heteroplasmic
variants (Fig. 6 and Supplementary Fig. 6a), with similar cluster
profiles observed in three cell stages (Supplementary Fig. 6b).
This included multiple variants occurring in the same lineage,
such as 13327G and 1392G (Supplementary Fig. 6c), which were
seen in the same 20% of cells from the same donor.

Having defined sub-clones within each line, next we deter-
mined whether the mtDNA variants had an effect on function
between the different sub-clones within the same cell line. First,
we analysed factors contributing to the variance in gene
expression for the top 4000 highly expressed genes using a linear
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mixed model (see 'Methods'). As seen previously, the cell
developmental stage was the main source of variation, followed
by the experimental batch and cell line of origin (Supplementary
Fig. 6d)3. However, analysing the mean HF of non-synonymous
mtDNA variants uncovered additional differences in gene
expression attributable to the mtDNA variants. In the 12 tested
cell lines, mtDNA variants accounted for >5% of the variance in
expression for 897 genes in one of three developmental stages. Up
to 129 genes in an individual line showed differential expression
attributable to non-synonymous mtDNA variants (Fig. 5e and
Supplementary Data 3), and the same 65 differentially expressed
genes were observed in more than one cell line associated with the
same mtDNA variants. Differential expression (DE) analysis
comparing the cells carrying different mtDNA genotypes within
each donor revealed 1402 DE genes (FDR < 0.1) due to 95
mtDNA variants from 17 (70.8%) cell lines (see 'Methods'). In
total, 89 of 95 (93.7%) were iPSC/mesendo/defendo-specific
variants observed in the single cells that were not detected in any
of the matched fibroblast cells. We identified up to 291 DE genes
associated with a single variant, and 52 DE genes were seen in
more than one cell line (Supplementary Data 4). In conclusion,
iPSC/mesendo/defendo-specific mtDNA variants defined sub-
clones within each cell line, leading to different transcriptional

profiles. GO enrichment analysis showed that the differentially
expressed genes played a key role in mitochondrial ATP
synthesis, oxidative phosphorylation, epidermal cell differentia-
tion, and telomere maintenance and organisation (FDR < 0.05)
(Supplementary Data 5).

Discussion
Human iPSCs have become a key platform for human disease
modelling and therapeutic development, providing new insights
into the pathophysiology, enabling high-throughput drug
screening, and also providing a source for tissue-specific cell
therapies. Despite showing early promise, concerns about het-
erogeneity between iPSC lines derived from the same donor have
raised concerns about scientific reproducibility, and how gen-
eralisable the results are from the analysis of an individual cell
line. Whole transcriptome and nuclear genome analysis has
shown molecular heterogeneity between iPSC lines derived from
the same primary cell line, contributing to the phenotypic
variation1–3, but less is known about mtDNA.

Analysing 141 iPSC and 146 primary fibroblast lines, here we
confirm the age-related accumulation of mtDNA mutations in
human fibroblasts, and show that cell reprogramming removes
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this trend. From a mtDNA perspective, the iPSCs appear to have
been ‘rejuvenated’, analogous to the purification of mtDNA
which occurs during germline reprogramming. However,
although the absolute number of mtDNA mutations in the iPSC
lines was less than the matched donor fibroblasts, the mean level
of heteroplasmy (heteroplasmy fraction, HF) was greater, and
variants in different mtDNA regions were subject to purifying
selection or were enriched through a selective advantage. We also
saw iPSC-specific mtDNA mutations emerging in individual iPSC
lines which displayed a distinct mutational signature, and known
pathogenic mtDNA mutations reached high percentage

heteroplasmy levels. These findings are in keeping with previous
observations in human embryonic stem cells (hESCs) which also
harbour a wide range of different mtDNA mutations at the
single-cell level26.

It is important to note that, as with any sequencing experiment,
there are technical limitations to our approach. For example, we
are unable to completely exclude rare variants in the fibroblast
lines that fell well below the detection threshold of 2% used in the
bulk WGS, either because they were at low heteroplasmy levels in
many cells, or because a very small number of cells carried
homoplasmic variants. Technical limitations in the sequencing

Fig. 5 Characteristics of mtDNA heteroplasmic variants detected by single-cell RNA sequencing. a Illustration of separate models explaining the variants
with the same pseudo-bulk heteroplasmy level. A variant with 50% HF could be due to 100% of cells carrying ~50% HF heteroplasmic variants (left).
Alternatively, a variant with 50% HF could be due to 50% of cells carrying homoplasmic variants in the population (right two graphs). In the middle, the
variant was passed from the same ancestral cell. On the right, the variant mutated independently in a large proportion of cells. b The proportion of cells
carrying the same variant from each cell line was grouped into different bins. Line plots show the distributions of the mutational rates estimated within each
bin (where mutational rate= number of mutations within each bin from the same cell line divided by the number of cells from each cell line multiplied by
16569 (bp)). The mutational frequency profiles were consistent between the three cell stages. Cells defined as iPSCs, mesendo and defendo cells are
shown in different colours. c Scatter plots of the log2 percentage of cells carrying the same variant from each cell line between any two of three cell stages.
The HF for each individual mutation was highly correlated across all three cell stages. Source data are provided as a Source Data file. d Cumulative
distribution of the heteroplasmic variants detected in each cell type. Variants shared with their matched fibroblast cell lines are shown in the upper left side,
and iPSC/mesendo/defendo-specific variants are shown in the lower right side. e Violin and box plots show the percentage of the variance for gene
expression explained by mtDNA variants from two independent cell lines. Cells defined as iPSCs, mesendo and defendo cells are shown in different colours.
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Fig. 6 Lineage tracing using mtDNA variants reveals multiple sub-clones within each cell line. a UMAP plot of mitochondrial mutation profiles, based on
11 cell lines with at least 300 cells. Single cells were separated according to their origins based solely on the mtDNA heteroplasmic variant data. Cells are
coloured by each cell line of origin. b An example of hierarchical clustering by the mitochondrial genotyping (rows) for the single cells within a single-cell
line. Cells are coloured by their cell stages (columns). Colour bar= heteroplasmy fraction. c, d An example of UMAP plot of mtDNA mutation profiles from
a single-cell line, with cells coloured by the defined cluster (c), and heteroplasmy fractions of specific mutations observed in a cell line (d). The mutations
are labelled at the top of the plots.
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approach, such as the introduction of base errors, mean that we
are unable to absolutely exclude the possibility of any variant
present in iPSCs being present in fibroblasts, and our reported
iPSC-specific mutation rate must be interpreted13 in this context.
For this reason, we have not referred to these variants as ‘de
novo’, because we cannot be certain that these variants are not
present in a very small number of molecules in the original
fibroblast line. A more sensitive detection technique might reveal
ultra-rare mutations in fibroblasts that are present in iPSCs at
much higher levels, lowering the iPSC-specific mutation rate.
However, it is also likely that a more sensitive technique would
detect additional mutations in iPSCs not present in the fibro-
blasts, counterbalancing this effect. At this point, we can only
speculate what the implications of a more sensitive detection
method might be. However, this does not change our main
conclusion that the heteroplasmy levels change during cell
reprogramming. A re-analysis of published data13 from human
30 iPSC clones derived from three blood samples yields a very
similar mutation rate (8.85 × 10−5/base pair) to our result cal-
culated from the reprogramming of human fibroblasts
(8.62 × 10−5/base pair). This adds weight to our conclusion that
reprogramming shapes the mtDNA landscape, and appears to be
independent of the original cell type. However, definitive evidence
will require a much more extensive comparison of iPSCs derived
from different tissues from the same individual.

What mechanisms could explain the changing heteroplasmy
levels we have observed during reprogramming? Rapid shifts in
heteroplasmy could be due to a genetic bottleneck effect. This has
been extensively studied in the female germline where the bot-
tleneck could be due to a reduction in mtDNA content within the
cell27, packaging of mtDNA into ‘segregating units’ which
reduced the effective population size of mtDNA molecules28, the
focal replication of mtDNA in different regions of the cell29, and
related mechanisms involving the fission and fusion of
mitochondria30. A bottleneck effect could also occur at the cel-
lular level due to the preferential replication or loss of cells
containing specific mtDNA variants during reprogramming. This
is supported by recent evidence in mice, where mtDNA variants
have been shown to influence reprogramming efficiency from
fibroblasts to iPSCs19.

The selection could occur at several levels31. At the cellular
level, differences in cellular proliferation or cell death could
influence heteroplasmy levels in the whole population of cells32.
Selection could also occur at the mitochondrial level, through
increased biogenesis or selective destruction by autophagy or
mitophagy33. Some mtDNA variants could also influence mtDNA
replication itself, particularly those in the non-coding D-loop.
Given emerging evidence that cell culture conditions such as the
oxygen level of the addition or antioxidants can influence het-
eroplasmy levels34, including during iPSCs generation19, it is
possible that the precise conditions used to generate the iPSCs
influenced the heteroplasmy dynamics that we observed. How-
ever, the HipSci resource provides an opportunity to study all of
these mechanisms now that the mtDNA variation has been
characterised in detail.

Analysing single-cell transcriptomes at three states of differ-
entiation allowed the identification of distinct cell lineages based
on their mtDNA sequence. Unlike the reprogramming, hetero-
plasmy levels remained stable during the three stages of differ-
entiation. Although only making a minor contribution to the
overall variance in gene expression between donors3, the mtDNA
defined sub-clones defined within each lineage showed differ-
ences in gene expression, including key genes involved in cellular
metabolism, including ATP synthesis, telomere maintenance and
organisation and epidermal cell differentiation. Most of the var-
iants (93.7%) influencing gene expression were from iPSC/

mesendo/defendo-specific variants during reprogramming. Thus,
the process of cell reprogramming shapes the mtDNA landscape
clone-by-clone, adding to the heterogeneity of derived iPSCs. It is
highly likely that these findings will have an impact on iPSC
disease models, and the use of iPSC cell lines in cellular therapies.
These cell lines are available to the scientific community through
the human induced pluripotent stem cell initiative (https://
www.hipsci.org/)1.

Methods
Donors and cell lines. In all, 146 iPSC and 151 fibroblast lines from 151 healthy
donors (male 64, female 87) were obtained from the Human Induced Pluripotent
Stem Cells Initiative (HipSci, http://www.hipsci.org/)1. The donors’ age was
between 27 and 77 years (Supplementary Fig. 1a). The cell line passage number of
iPSC were between passages 8 and 43 (Supplementary Fig. 1c). All donors were
collected from consented research volunteers recruited from the NIHR Cambridge
BioResource (http://www.cambridgebioresource.org.uk). Samples were collected
initially under ethical approval for iPS cell derivation (REC 09/H0304/77, V2 04/
01/2013), with later samples collected under a revised consent (REC 09/H0304/77,
V3 15/03/2013).

Generation of iPS cell lines. The iPSCs were generated in bulk culture without
physical subcloning. Details of the generation of the iPSC lines including fibroblast
isolation, iPSC derivation, iPSC culture, iPSC line selection, molecular assays and
cell culture for maintenance and differentiation in scRNA sequencing are available
at http://www.hipsci.org/ and refs. 1,3, summarised here as follows. Primary
fibroblasts were derived from 2-mm skin punch biopsies collected in advanced
DMEM, 10% FBS, 1% l-glutamine, 0.007% 2-mercaptoethanol with 1% penicillin
and streptomycin at room temperature. Manually dissected fragments were
transferred onto a 60-mm Petri dish containing fibroblast growth medium and
cultured for five days. Explants were fed every 5 days with 1 ml fibroblast medium
until outgrowths appeared and were screened for mycoplasma (EZ-PCR Kit, Gene
flow (41106313-001)). On reaching confluence after ~30 days, fibroblasts were
passaged into 25-cm2 flasks, and further passaged when 80–90% confluent into a
75-cm2 flask. Cells were then expanded to confluency in 225-cm2 flasks at a split
ratio of 1:3, and cryopreserved at 1–2 million cells per vial in FBS and 10% DMSO
or seeded immediately for reprogramming. Fibroblasts were transduced using
Sendai vectors expressing human (h)OCT3/4, hSOX2, hKLF4 and hMYC51
(CytoTune, Life Technologies, A1377801) and cultured on an irradiated mouse
embryonic fibroblast (MEF-CF1) feeder layer in a 10-cm2 tissue-culture dish in
iPSC medium consisting of advanced DMEM (Life Technologies) supplemented
with 10% Knockout Serum Replacement (KOSR, Life Technologies), 2 mM
l-glutamine (Life Technologies), 0.007% 2-mercaptoethanol (Sigma-Aldrich),
4 ng ml−1 recombinant zebrafish fibroblast growth factor-2, and 1% pen/strep (Life
Technologies). Cells with an iPS cell morphology appeared ~25–30 days after
transduction. Six undifferentiated colonies per donor selected between days 30–40
were transferred onto 12-well MEF-CF1 feeder plates and cultured in iPS cell
medium with daily medium change, and passaged every 5–7 days. Three of the six
lines were selected based on morphological qualities (undifferentiated, roundness
and colony compactness) and expanded for banking and characterisation. Each iPS
cell line was passaged ~16 times before the initial molecular data for quality
control, including genotyping, gene expression data, and an assessment of the
pluripotency and differentiation potential of each line.

A summary of the iPSC lines used in this study is available in Supplementary
Data 1.

Extracting mitochondrial sequences from whole-genome sequencing and
detecting mitochondrial variants. Whole-genome sequencing (WGS) data of 146
iPSC and 151 fibroblast lines were obtained from HipSci (http://www.hipsci.org/).
The average depth of WGS was 44-fold (s.d.= 9-fold) (Supplementary Fig. 2i). The
subset of sequencing reads which aligned to the mitochondrial genome were
extracted from each WGS CRAM file using Samtools35. We ran MToolBox (v1.1)
on the resulting smaller BAM files to generate the realigned mtDNA BAM files36.
During this process, any read pairs for which either of the two reads in the pair
mapped to multiple locations were discarded, including potential nuclear mito-
chondrial sequences in the nuclear genome and amplification artefacts. The rea-
ligned bam files were used to call the variants and generate the vcf file for each
sequence. We also used the second variant caller VarScan237 to call mtDNA
variants from the realigned bam file (--strand-filter 1, --min-var-freq 0.001, --min-
reads2 1, --min-avg-qual 30). The mpileup files used in VarScan2 were generated
by Samtools with options -d 0 -q 30 -Q 30. We then filtered the variants as follows:
(1) we retained variants for which the allele fractions (AFs) were above 2% from
both MToolbox and VarScan2, and the allele fractions were extracted from
VarScan2. The average sequencing depth of mtDNA was 1824-fold (s.d. 2249-fold),
which ensured us to detect the low-level variants; (2) we retained only single-
nucleotide polymorphisms (SNPs); (3) we removed variants with depth < 200×; (4)
we removed variants where there were less than two reads on each strand for the
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minor allele; (5) we removed variants falling within low-complexity regions (66–71,
300–316, 513–525, 3106–3107, 12418–12425 and 16182–16194).

Our initial detection threshold of 2% heteroplasmy fraction (HF) was based on
our previous work6, where we analysed samples sequenced twice with ~2000-fold
depth and showed >95% reproducibility to detect a HF > 1%. Given the mean
mtDNA sequencing depth of ~1000-fold in the current dataset, we set a more
conservative detection threshold of 2% HF.

Mitochondrial DNA haplogroup assignment was performed using variants with
allele fraction above 95% by HaploGrep239,40.

Quality control of samples. Potential DNA cross-contamination was checked
using mtDNA variant calls. Two samples carrying more than ten heteroplasmic
variants with similar HFs were excluded from this study. We also removed four
sequences where the average depth of mtDNA was below 400×. A further four
iPSCs were removed because their matched fibroblasts were unavailable or failed
quality controls. After all of the sample QC steps, 146 fibroblasts and 141 iPSCs
were included in the analysis. From 25 donors one iPSC line was included and
from 58 donors 2 iPSC lines were included (Fig. 1a).

Although the average depth of mtDNA sequencing was clustered into two
groups (Supplementary Fig. 2j), there was no detectable difference in the depth
between paired fibroblasts and iPSCs (median depth in fibroblasts 777×, median
depth in iPSCs 887×, P= 0.907, paired Wilcoxon test). Likewise, the average
number of heteroplasmic variants, the heteroplasmy fraction (HF), and the average
number of low-level heteroplasmic variants (HF < 5% or HF < 10%) were no
detectable difference between the two clusters (P= 0.07, P= 0.19, P= 0.10 and
P= 0.10, two-sided Wilcoxon rank-sum test) (Supplementary Fig. 2g, h). There
was no detectable correlation between either the mean number of heteroplasmic
variants or the average heteroplasmy fraction (HF) and the mtDNA sequencing
depth (Supplementary Fig. 2k, l).

Classifying the heteroplasmic variants. We classified the heteroplasmic variants
from 141 iPSCs and their matched fibroblast progenitors from 83 donors into three
categories: (1) shared, if the variant was present in both fibroblasts and their
derived iPSCs and was heteroplasmic in at least one of the variants; (2) lost, if the
heteroplasmic variant was present in the fibroblast but not detected in their derived
iPSC and (3) iPSC-specific, if the heteroplasmic variant was present in the iPSC
and not detected in their fibroblast progenitor. If two iPSCs were derived from the
same fibroblast, we defined them as two separate fibroblast and iPSC pairs.

Next, we defined sub-categories of heteroplasmic variants detected in the
fibroblast cell lines with two derived iPSCs and their derived iPSCs: (1) shared
both, if the variant was present in the fibroblast and both derived iPSCs and was
heteroplasmic in at least one of the variants; (2) shared one/lost one, if the variant
was present in the fibroblast and only one of two iPSCs and was heteroplasmic in at
least one of the variants; (3) iPSC-specific both, if the same heteroplasmic variant
was present in both iPSCs and not detected in their matched fibroblast; (4) iPSC-
specific one, if the heteroplasmic variant was present in only one of two iPSCs and
not detected in their matched fibroblast; (5) lost both, if the heteroplasmic variant
was present in the fibroblast but not detected in any of their derived iPSCs.

Analysing age correlation. To understand the relationship between donor age and
the mean number of heteroplasmic variant and average heteroplasmy fraction in
fibroblast cell lines and iPSC lines, we applied linear regression to each dataset
using R41.

Model 1<� lmðNfibro � aþ SexþHapÞ ð1Þ

Model 2<� lmðNipsc � aþ Sexþ HapÞ ð2Þ

Model 3<� lmðHFfibro � aþ SexþHapÞ ð3Þ

Model 4<� lmðHFipsc � aþ Sexþ HapÞ ð4Þ
where Nfibro and Nipsc are the mean number of heteroplasmic variant from each
sample, a is the donor age, HFfibro and HFipsc are the logit transformed average
heteroplasmy fraction from each sample, Sex is the sex and Hap is the mac-
haplogroup from each donor.

Predicting the direction of shifts of heteroplasmic variants. To understand
whether multiple factors affect the heteroplasmic shifts between fibroblast cell lines
and iPSC lines, logistic regression was applied using R.

Model5<� glmðS � HFvfibroþ Rmtþ Hapþ Age; family ¼ binomialÞ ð5Þ
where S= 1 if the normalised heteroplasmic shift was above 0, and S= 0 if nor-
malised heteroplasmic shift was below 0, HFvfibro was the logit transformed
heteroplasmy fraction from each variant in the fibroblast cell lines, Rmt was the
mtDNA regions (D-loop, non-synonymous, synonymous, rRNA and tRNA var-
iants), Hap was the macro-haplogroup from each donor, and age was the
donor age.

Defining known pathogenic mutations. The initial list of pathogenic mutations
was from MitoMap (Disease Mutations with mutation status as ‘Cfrm’)42 and the
previous study38. We then reviewed each variant by searching online literatures.
Based on previously published criteria43, a total of 87 single-nucleotide mutations
were included in the final list of pathogenic mutations44.

Analysing mutational signature and strand bias. Mutational spectra were
derived from the revised Cambridge Reference Sequence (rCRS) and alternative
alleles at each variant site. The resulting spectra were composed of the six distin-
guishable point mutations (C:G > T:A, T:A > C:G, C:G > A:T, C:G > G:C, T:A > A:T
and T:A > G:C). Each signature was displayed using a 96 substitution classification
defined by the substitution class and the sequence context immediately 3’ and 5’ of
the mutated base20,24. The substitution rate for each trinucleotide context was
estimated by the number of substitutions divided by the frequency of the trinu-
cleotide context present in the mtDNA reference genome (rCRS), in the light (L)
and heavy (H) strands. The signature profiles from the total heteroplasmic variants
observed in fibroblasts and iPSCs, lost heteroplasmic variants in fibroblasts, iPSC-
specific heteroplasmic variants in iPSCs and shared heteroplasmic variants between
fibroblasts and iPSCs were considered. To compare the signature profiles between
the different mtDNA regions, we estimated the frequency of six point mutations in
the L and H strands. To explore the mechanism of mutagenesis we correlated the
signature profiles of mtDNA substitutions from fibroblasts, iPSCs, shared and
iPSC-specific heteroplasmic variants with 30 cancer-specific mutational signatures
in the nuclear DNA identified24.

Estimating relative mtDNA copy numbers from WGS. We estimated the relative
mtDNA copy number from WGS by comparing the mean read depth of the
autosomes to the mean depth of mtDNA. Mean autosomal depth (DPautosome)
was calculated from 2.685 Gb autosome regions (without chromosome gaps). And
mean mitochondrial depth (DPmt) was obtained from the full length of mtDNA
genome (16,569 bp). Relative mtDNA copy number (CNmt) was calculated in a
diploid cell as below:

CNmt ¼ 2 ´DPmt=DPautosome ð6Þ

Detecting mitochondrial variants from bulk RNA sequencing. Bulk RNA-seq
FASTQ files for 332 iPSC lines were obtained from the ENA project: ERP007111
and EGA projects: EGAS00001000593. Raw sequencing data were used to detect
mitochondrial variants using the same pipeline as described above. Variants with
low-quality RNA-seq were discarded based on the criteria applied in WGS data. In
addition, we removed the highly heteroplasmic variants that were specific to
mtRNA (2617 A > G, 2129 G > A, 295 C > T, 5746 G > A, 13710 A > G and
5985 G > T), including three variants (295 C > T, 13710 A > G, and 2617 A > G)
previously reported as artefacts (Bar-Yaacov et al., 2013). 102 of 332 iPSC lines that
had matched WGS data available were included in this study45.

Detecting mitochondrial variants from single-cell RNA sequencing. Single-cell
RNA-seq FASTQ files for 36,044 cells were obtained from the ENA project:
ERP016000 and EGA projects: EGAS00001002278 and EGAD00001005741. Pro-
cessed single-cell count data were obtained from Zenodo: https://zenodo.org/
record/3625024#.Xil-0y2cZ0s. The details of cell culture and single-cell sequencing
were previously described3. The pipeline developed for the WGS data was used to
detect mtDNA variants from raw FASTQ files, with several additional filtering
steps: (1) retaining the cells with mtDNA genome sequencing depth above 200×,
(2) excluding the iPSC/mesendo/defendo-specific variants only detected in a single
cell from the same cell line which was more likely from sequencing error, (3)
defining heteroplasmic variants with HF between 2% and 95%, due to lower
sequencing depth in single-cell RNA-sequencing data compared to WGS, (4)
excluding the cells with >20 heteroplasmic variants, (5) retaining the mtDNA
regions with mean sequencing depth above 200× (11,704 bp from 2463 bp of
rRNAs and 9241 bp of coding regions). This resulted in 11, 538 cells from 60 cell
lines which also had WGS data available from their matched fibroblast cell lines.

Defining developmental stages of the single cells. The pseudotime of the single
cells from single-cell RNA-seq was obtained from Zenodo: https://zenodo.org/
record/3625024#.Xil-0y2cZ0s. The stage labels post iPSC (mesendo and defendo)
were defined using the methods previously described3. Briefly, cells were assigned
to the mesendo stage if they were collected at day 1 or day 2 and had pseudotime
values between 0.15 and 0.5. Cells were assigned to the defendo stage if they were
collected at day 2 or day 3 and had pseudotime values higher than 0.7. Cells with
intermediate pseudotime (between 0.5 and 0.7) were assigned as undefined.
Overall, we assigned 9969 (86.4%) cells to any of the stages (iPSC, mesendo and
defendo).

To compare the variant profiles between three cell stages, we included the cell
lines where at least 20 cells were available at each stage of development to minimise
sampling bias, which included 6881 cells from 24 cell lines. The average allele
frequency of each variant was estimated across all the cells from the same cell line
at each cell stage, which we termed pseudo-bulk variants.
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Defining cell lineages. For the analysis of the cell lineages, we only included 692
variants detected in more than 1% cells within the same cell line from 24 cell lines
which had >20 cells assigned to each cell stage. In all, 27 of 692 variants were also
present in the matched fibroblast cell lines, and 665 were iPSC/mesendo/defendo-
specific variants in the single cells. We performed a Uniform Manifold Approx-
imation and Projection (UMAP)25 of the cells from the different cell lines and
within each cell line using the mitochondrial DNA variants described above.
UMAP was analysed using the UMAP package46 with default parameters in R and
visualised using the M3C package47 in R.

Variance component and differential expression (DE) analysis. We only
included the cells and variants meeting the following filtering criteria: (1) cells were
assigned to one of three cell stages (iPSC, mesendo and defendo), (2) cell lines with
at least 100 cells and >20 cells assigned to each cell stage and (3) retaining variants
where >15 cells carried one of two alleles in each cell stage (Supplementary Data 1).
To perform variance component analysis for each cell line, we only included 12 cell
lines with more than 100 cells from each cell stage. We identified the top 4000 most
variable genes using a linear mixed model, and genes were ranked by the sig-
nificance of deviation48. Variance component analysis was performed on top 4000
most variable genes using a linear mixed model in the variancePartition R
package49. We included the cell stage, the experiment and the cell line identity as
random effects. To estimate the effects of mtDNA variants on gene expression, we
identified top 4000 most variable genes in the cells from the same cell stage, the
same experiment and the same cell line identity. Variance component analysis was
performed by partitioning gene expression variation into mean heteroplasmy
fractions of mtDNA non-synonymous variants and residual noise.

To further understand the effect of each mtDNA variant on gene expression, we
tested the differences in gene expression between cells carrying different genotypes
of mtDNA variants from the same cell line. We fitted a generalised linear model for
the gene expression data within each cell line from the same experiment with the
cell stages as covariates using MAST R package50. mtDNA genes and ribosomal
genes were excluded from the analysis. Gene Ontology (GO) enrichment analysis
was performed using Enrichr51–53.

Statistical analysis and plotting. All statistical analyses in this study were per-
formed using R41 and Python (http://www.python.org). Figures were generated
using Matplotlib (https://matplotlib.org) in Python and R. Circos plots were made
using Circos54.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All HipSci data used in this study can be accessed through http://www.hipsci.org. Whole-
genome sequencing data are available under accession numbers: ERP017015. Bulk RNA-
seq data are available under accession numbers: ERP007111 and EGAS00001000593.
Single-cell RNA-seq data are available under the accession numbers ERP016000 and
EGAS00001002278, EGAD00001005741. Processed single-cell count data are
downloaded from Zenodo: https://zenodo.org/record/3625024#.Xil-0y2cZ0s. Source data
are provided with this paper.

Code availability
Code is available at https://github.com/WeiWei060512/HipSci_mtDNA_paper. https://
doi.org/10.5281/zenodo.5136677.
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