332 research outputs found

    Vagal stimulation in heart failure

    Get PDF
    Vagal nerve stimulation (VNS) has a strong pathophysiological rationale as a potentially beneficial treatment for heart failure with reduced ejection fraction. Despite several promising preclinical studies and pilot clinical studies, the two large, controlled trials—NECTAR-HF and INOVATE-HF—failed to demonstrate the expected benefit. It is likely that clinical application of VNS in phase III studies was performed before a sufficient degree of understanding of the complex pathophysiology of autonomic electrical modulation had been achieved, therefore leading to an underestimation of its potential benefit. More knowledge on the complex dose–response issue of VNS (i.e., pulse amplitude, frequency, duration and duty cycle) has been gathered since these trials and a new randomized study is currently underway with an adaptive design and a refined approach in an attempt to deliver the proper dose to a more selected group of patients

    Cardiac Sympathetic Denervation in Channelopathies

    Get PDF
    Left cardiac sympathetic denervation (LCSD) is a surgical antiadrenergic intervention with a strong antiarrhythmic effect, supported by preclinical as well as clinical data. The mechanism of action of LCSD in structurally normal hearts with increased arrhythmic susceptibility (such as those of patients with channelopathies) is not limited to the antagonism of acute catecholamines release in the heart. LCSD also conveys a strong anti-fibrillatory action that was first demonstrated over 40 years ago and provides the rationale for its use in almost any cardiac condition at increased risk of ventricular fibrillation. The molecular mechanisms involved in the final antiarrhythmic effect of LCSD turned out to be much broader than anticipated. Beside the vagotonic effect at different levels of the neuraxis, other new mechanisms have been recently proposed, such as the antagonism of neuronal remodeling, the antagonism of neuropeptide Y effects, and the correction of neuronal nitric oxide synthase (nNOS) imbalance. The beneficial effects of LCSD have never been associated with a detectable deterioration of cardiac performance. Finally, patients express a high degree of satisfaction with the procedure. In this review, we focus on the rationale, results and our personal approach to LCSD in patients with channelopathies such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia

    Insights from computational modeling on the potential hemodynamic effects of sinus rhythm versus atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most common clinical tachyarrhythmia, posing a significant burden to patients, physicians, and healthcare systems worldwide. With the advent of more effective rhythm control strategies, such as AF catheter ablation, an early rhythm control strategy is progressively demonstrating its superiority not only in symptoms control but also in prognostic terms, over a standard strategy (rate control, with rhythm control reserved only to patients with refractory symptoms). This review summarizes the different impacts exerted by AF on heart mechanics and systemic circulation, as well as on cerebral and coronary vascular beds, providing computational modeling-based hemodynamic insights in favor of pursuing sinus rhythm maintenance in AF patients
    corecore