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Left cardiac sympathetic denervation (LCSD) is a surgical antiadrenergic intervention

with a strong antiarrhythmic effect, supported by preclinical as well as clinical data. The

mechanism of action of LCSD in structurally normal hearts with increased arrhythmic

susceptibility (such as those of patients with channelopathies) is not limited to the

antagonism of acute catecholamines release in the heart. LCSD also conveys a strong

anti-fibrillatory action that was first demonstrated over 40 years ago and provides the

rationale for its use in almost any cardiac condition at increased risk of ventricular

fibrillation. The molecular mechanisms involved in the final antiarrhythmic effect of LCSD

turned out to be much broader than anticipated. Beside the vagotonic effect at different

levels of the neuraxis, other new mechanisms have been recently proposed, such as

the antagonism of neuronal remodeling, the antagonism of neuropeptide Y effects,

and the correction of neuronal nitric oxide synthase (nNOS) imbalance. The beneficial

effects of LCSD have never been associated with a detectable deterioration of cardiac

performance. Finally, patients express a high degree of satisfaction with the procedure.

In this review, we focus on the rationale, results and our personal approach to LCSD

in patients with channelopathies such as long QT syndrome and catecholaminergic

polymorphic ventricular tachycardia.

Keywords: sudden cardiac death, cardiac sympathetic denervation, long QT syndrome, catecholaminergic

polymorphic ventricular tachycardia, cardiac autonomic nervous system

INTRODUCTION

The management of patients at risk of life-threatening arrhythmias is challenging, more now than
ever. On one hand, our capability to identify the subjects at higher risk of sudden cardiac death
(SCD) is still limited (1). On the other, the widespread availability of implantable cardioverter
defibrillators (ICDs) is a double edge sword. Not only because of the risk of side effects but also
because in peculiar settings ICDs may even become pro-arrhythmic. Additionally, recurrent ICD
shocks have a dramatic impact on the quality of life. These drawbacks are particularly evident
in young patients with inherited arrhythmogenic disorders. The management of these subjects is
further complicated by the unlikely feasibility of randomized clinical trials in this setting, which
may give the wrong perception of lack of strong evidence for a specific treatment. Left cardiac
sympathetic denervation (LCSD) is an extremely effective but still underutilized anti-adrenergic
therapy. LCSD has a strong physiological rationale, combined with consistent preclinical results,
and clinical data from well-conducted multicenter registries.
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In this review we will first summarize the history and
the antiarrhythmic rationale for LCSD, including well-
established antiarrhythmic mechanisms as well as potential
new mechanisms. Then, we will present the clinical results of
LCSD in Long QT Syndrome (LQTS) and Catecholaminergic
Polymorphic Ventricular Tachycardia (CPVT), including both
secondary and primary prevention. Finally, we will provide our
approach for LCSD use in LQTS and CPVT.

ORGANIZATION OF CARDIAC
SYMPATHETIC NERVOUS SYSTEM IN
HUMANS

The two opposite branches of cardiac autonomic nervous
system (ANS), namely the sympathetic and the parasympathetic
nervous system, share a common embryological origin from
the neuronal crest (2). The sympathetic cardiac ANS follows
typical patterns in most people, although variants are seen
(3, 4). It is constituted by the mediastinal cardiac plexus, the
paravertebral sympathetic ganglia, the dorsal root ganglia (DRG),
the spinal cord, and the brain stem. Cardiac sympathetic afferent
fibers provide beat-to-beat information centrally as their sensory
endings are mechanoreceptors (5). The extracardiac afferent
stations, containing pseudounipolar nerve cells, are the DRG
from C7 to T4 spinal cord level. Of note, cardiac sympathetic
afferent fibers travel across the paravertebral sympathetic ganglia
(without having synapsis) before reaching the DRG. Efferent
sympathetic preganglionic neurons have their soma in the
intermediolateral column of spinal cord and synapses on
postganglionic neurons located in the lower cervical and upper
thoracic paravertebral ganglia. The lowest cervical ganglion (C8)
and the highest thoracic ganglion (T1) are generally fused
bilaterally to constitute the left and the right stellate ganglia
(also referred to as cervicothoracic ganglia). In <3% of human
sympathetic chains, the second thoracic ganglion (T2) is fused
as well, constituting a trilobal (C8-T1-T2) stellate ganglion (3).
The stellate ganglia convey a consistent amount of cardiac
sympathetic postganglionic fibers. The remaining is provided
by T2–4 paravertebral ganglia. Figure 1 summarizes cardiac
nervous system organization in humans.

HISTORICAL PROSPECTIVE

In 1899, (6) Francois-Frank was the first to suggest that the
removal of cervicothoracic sympathetic nervous system could
prevent angina pectoris episodes. The first intervention was
performed in 1916 by Jonnesco (7). He removed the left
stellate ganglion (LSG) in a patient suffering incapacitating
angina associated with cardiac arrhythmias, with effective and
long-lasting suppression of both conditions. This pioneering
intervention was strongly criticized due to the potential
detrimental effects of depriving patients of the warning signal
represented by pain. Moreover, the consequences of left
stellectomy on coronary flow were still unclear. In 1929, Leriche
and Fontaine (8) demonstrated that the sympathetic nerves
exert a vasoconstrictive effect on the coronary arteries and

not a vasodilator one, as previously thought. Subsequently,
several clinical studies were performed in both Europe and
the USA, confirming that left stellectomy was able to prevent
anginal attacks (9), and to improve exercise tolerance (10).
Concerning the optimal extension of the procedure, cervico-
thoracic denervation (removal of the stellate ganglion and T2–T4
thoracic ganglia) proved to be the most effective. Finally, in the
60s, despite its clear efficacy, left cardiac sympathetic denervation
(LCSD) was progressively abandoned for the treatment of angina
due to the widespread usage of surgical coronary artery bypass
graft and β-adrenergic-receptor blockers (11).

Except for some case reports (12, 13) the antiarrhythmic
potential of cardiac sympathetic denervation in humans
remained largely unexplored until the 70s. In 1971, Moss and
McDonald (14) were the first to report LCSD in a LQTS
patient with recurrent syncopal episodes. The rationale was
based on a canine study (15) showing a consistent QT interval
prolongation after either right stellate ganglionectomy or LSG
stimulation. The patient underwent removal of the sympathetic
ganglia from C7 to T2, including the entire LSG. Besides the
suppression of arrhythmias, a persistent QT interval reduction
was noticed. Subsequently, other groups tried to reproduce
the beneficial effects on QT interval through the reversible
percutaneous block of the LSG, with inconsistent results (16).
Of note, at that time the appearance of Horner syndrome
was considered as a good marker of the effective blockade
of cardiac nerves. On the contrary, as pointed out already in
1975 (17), the Horner syndrome simply indicates an effective
blockade of the sympathetic fibers traveling in the upper part
of the stellate ganglion and innervating the eye. It does not
necessarily indicate the block of the sympathetic fibers reaching
the heart. Moreover, unlike in dogs and cats, in humans
cardiac sympathetic innervation is not entirely provided by the
stellate ganglia.

A better understanding of the rationale for LCSD in LQTS
originated from the work by Schwartz and associates. Schwartz
started from the observation in his first LQTS patient that
sympathetic activation was triggering macroscopic T wave
alternans, and he then reproduced in cats both QT prolongation
and T-wave alternans by electrical stimulation of the LSG
(18). On this basis, the young patient was treated with
LCSD (remaining asymptomatic more than 40 years after)
and sympathetic imbalance with left-sided dominance was
proposed as the pathophysiological mechanisms of LQTS (17,
19). This concept prompted a large series of experimental studies
investigating the consequences of unilateral (right or left) cardiac
sympathetic denervation (20–22).

ANTIARRHYTHMIC RATIONALE AND
MECHANISMS OF ACTION OF CARDIAC
SYMPATHETIC DENERVATION

Antiadrenergic Effects
In 1976, Schwartz et al. showed in anesthetized dogs (20)
that ischemia-related arrhythmias were increased by right
stellate ganglion block and decreased by LSG block. In a
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FIGURE 1 | Cardiac nervous system organization in humans. Blue: afferent nervous system with its ganglia: nodose ganglia and C7-T4 dorsal root ganglia (DRG).

Green: parasympathetic efferent nervous system. Red: sympathetic efferent nervous system. All the afferent and efferent structures outside the central nervous

systems are bilateral, although mostly represented as unilateral for simplicity. Cardiac afferent fibers traveling across the paravertebral sympathetic ganglia (usually

referred to as cardiac sympathetic afferent fibers) directly reach the DRG without having synapsis before. These fibers mediate cardio-cardiac sympathoexcitatory

spinal reflexes that significantly increase the sympathetic output to the heart. Left cardiac sympathetic denervation (LCSD) consists in the removal of the left thoracic

sympathetic chain and paravertebral ganglia from T1 to T4. Since ipsilateral DRG are spared by LCSD, a left afferent reinnervation from the DRG to the heart is

theoretically possible with time. On the other hand, the left efferent sympathetic system from T1 to T4 is interrupted at a preganglionic level; therefore, no ipsilateral

efferent sympathetic reinnervation is possible after LCSD.

conscious canine model (21), still considered as the most-
clinically relevant experimental model of SCD (dogs with a
healed myocardial infarction (MI) exposed to a brief coronary
artery occlusion while exercising on a treadmill) left stellectomy
confirmed its protective effect. The antagonism of ischemia-
induced sympathetic activation (23) as well as the quantitative
dominance of the left sided sympathetic nerves over the right
(22) were the first antiarrhythmic mechanisms proposed for the
protection associated with LSG block or removal. Next came
the demonstration that VF threshold, a reliable and quantitative
marker of cardiac electrical stability, was lower after unilateral
right stellectomy and much higher after left stellectomy (24).
These animal data provide a solid rationale for LCSD which goes
far beyond LQTS and ischemia-related arrhythmias and could
extend to every cardiac condition characterized by an increased
susceptibility to VF. A major mechanism contributing to the
protection is the net decrease in norepinephrine (NE) released
in the left ventricle during sympathetic neural activation. Of
note, the neural release of NE is an extremely inhomogeneous
phenomenon (25–27). Indeed, sympathetic nerve stimulation

rather than circulating norepinephrine, modulates T-peak to T-
end interval (an ECG marker of dispersion of repolarization)
by increasing global dispersion of repolarization (25, 28). In
turn, a spatially inhomogeneous ventricular repolarization is a
very well-defined pro-arrhythmic marker, both for scar related
arrhythmias (29) and for functional reentrant arrhythmias
such as polymorphic ventricular tachycardia and VF (30). The
temporal dispersion of ventricular repolarization is important as
well and, together with spatial dispersion, may lead to T wave
alternans, an ECG marker of high electrical instability, both in
case of macro- (18) and of microvolt alternans (31). Besides
acting on the arrhythmic substrate, NE, like epinephrine, also
modulates the trigger. Not only does it enhance automaticity in
pacemaker cells in both the atria and the ventricles (32), but it also
increases triggered activity including both early (EAD) (33) and
delayed (DAD) afterdepolarizations (34, 35). Finally, LCSD has
α-adrenergic-receptor blocking properties. Indeed, similarly to
the effect of α-adrenergic-receptor blockade, and opposite to that
of β-Blockade, LCSD increases myocardial reactive hyperemia,
an index of the capability of the coronary bed to dilate (36). In
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addition to providing the basis for the antianginal effect, this
could contribute to the antiarrhythmic efficacy (37).

Vagotonic Effect
Animal studies clearly showed that LCSD is accompanied by a
reflex increase in cardiac parasympathetic (vagal) efferent activity
(38). In fact, LCSD interrupts the majority of centrally projecting
cardiac sympathetic afferents, which have an inhibitory effect on
the vagal outflow directed to the heart. In turn, experimental
(39, 40) and clinical data (41, 42) showed that blunted vagal tone
and reflexes can favor life-threatening arrhythmias; conversely,
these arrhythmias can be counteracted in animals by direct vagal
stimulation (43) or pharmacological activation (44). So far, the
experience with direct vagal stimulation in humans is limited
to heart failure patients (45–48). Accordingly, the vagotonic
effect of LCSD is particularly relevant from an anti-arrhythmic
point of view in conditions characterized by a chronic and
progressive increase in sympathetic tone and a parallel decrease
in central parasympathetic drive, such as myocardial infarction
(MI) and heart failure (49). Some of these concepts are at the
basis of an ongoing clinical trial which examines the potential
benefit associated with LCSD in patients with advanced heart
failure (50).

Other Antiarrhythmic Mechanisms
Antagonism of Neuronal Remodeling
In 2000, Cao et al. (51) demonstrated in dogs that an increased
intra-cardiac sympathetic nerve regeneration (nerve sprouting),
obtained by infusing nerve growth factor to the LSG, was
associated with a greater susceptibility to spontaneous ventricular
arrhythmias. Of note, an intracardiac neuronal remodeling
including both denervation and nerve sprouting (52) may
occur after any kind of myocardial injury (53). Several animal
studies consistently showed the high arrhythmic susceptibility
of the denervated myocardium (54, 55). Similarly, in patients
with cardiomyopathy and an ejection fraction ≤35%, the
degree of cardiac sympathetic denervation quantified either
by cardiac iodine-123 metaiodobenzylguanidine (123I- MIBG)
imaging (56) or by positron emission tomography with 11 C-
meta-hydroxyephedrine (11C-HED PET) (57) was significantly
associated with ventricular arrhythmic risk. The process of
neuronal remodeling is not limited to the heart, involving also
extracardiac structures such as the sympathetic thoracic ganglia
and the DRG (58). Myocardial infarction in animal models,
independently of the site, is associated with an increase in
nerve density, neuronal size, and neuropeptide Y expression
in both the left and right stellate ganglia (59, 60). The
same remodeling was described in humans. In 2012, Ajijola
et al. (61) reported a significant neuronal enlargement and
an increased synaptic density in the LSG of patients with
refractory ventricular arrhythmias and structural heart disease
undergoing LCSD. A few years later the same group further
enriched the description of the sympathetic ganglia in patients
with cardiomyopathy and refractory ventricular arrhythmias
undergoing cardiac sympathetic denervation (62) showing
the presence of a remarkable inflammatory cells infiltration
(CD3+ T cells and neutrophils), combined with neurochemical

remodeling, oxidative stress, and satellite glial cell activation. Of
note, among the 16 patients studied (mean 45 ± 15 years), 5
had no macroscopically clear myocardial scar at pre-operatory
multimodal imaging. Almost no signs of local inflammation or
neuronal remodeling were observed in the stellate ganglia used
as controls, obtained from 8 organ donors (mean 28 ± 8 years)
with normal hearts deceased either for traumatic reasons or by
natural causes.

These findings raise the intriguing question about the
potential primary role of sympathetic ganglia inflammation
in triggering adrenergic related ventricular arrhythmias in
structurally normal hearts. Rizzo et al. (63) found mild but
distinct inflammatory infiltrates composed of CD3+ and CD8+
T cells and macrophages in the LSG of 12 LQTS/ CPVT patients
(mean 23± 17 years). They were all heavily symptomatic patients
who received LCSD in secondary prevention. The authors
specifically searched for neurotropic viruses as a potential trigger
for the immune cell infiltration, with negative findings. They
proposed that T-cell–mediated cytotoxicity toward ganglion
cells may prompt an increase in sympathetic efferent activity
toward the heart, therefore acting as a trigger and/or an
enhancer of electrical instability in patients already predisposed
to arrhythmias, as it occurs in LQTS and CPVT patients. Of note,
as pointed out by Moss et al. (64) in the editorial comments
of the paper, all patients had either recurrent syncopal episodes
or many ICD shocks before the ganglionectomy, although the
time frame between the last events and LCSD was not provided
by the authors. Syncopal events are associated with transient
generalized hypoperfusion, while ICD shocks can damage the
myocardium and the neuronal fibers (65). Therefore, the mild
auto immunemediated ganglionic remodeling observed by Rizzo
et al. could be the consequence rather than the cause of the
arrhythmic episodes. Moreover, the stellate ganglia used as
controls, obtained from 10 accidently deceased patients (mean 35
± 18 years), showed signs of inflammatory activity with the same
immunohistological pattern, albeit to a lesser extent. Finally,
no specific data supporting an increased sympathetic neuronal
activity, such as increased neuronal size, increased synaptic
density or a neurochemical shift in adrenergic phenotype were
provided, as opposed to the neuronal hypertrophy and adrenergic
shift demonstrated by Ajijola et al. (61, 62) in the stellate ganglia
of patients with cardiomyopathy (even without overt scar) and
intractable ventricular arrhythmias.

When interpreting these results, it’s important to remember
that cardiac sympathetic ganglia are not routinely evaluated
by pathologist in the postmortem examination. Therefore,
histological findings from these tissues among sudden
arrhythmic death victims are lacking. On the other hand, a
direct and non-invasive anatomopathological assessment of
cardiac sympathetic ganglia in living patients is challenging
both with labeled positron emission tomography tracers and
with magnetic resonance. Indirect information about ongoing
extracardiac neuronal remodeling processes can be obtained
through cardiac 123I-MIBG or 11C-HED PET images, which are
by the way unable to distinguish between anatomical (related to
a reduced fiber density) rather than purely functional neuronal
fibers abnormalities. As a matter of fact, an abnormal 123I-MIBG
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cardiac scintigraphy as compared with healthy controls was
reported in LQTS (66, 67) patients as well as in patients with
idiopathic ventricular tachycardia and fibrillation (68).

Overall, the intriguing question about the potential pro
arrhythmic role of sympathetic ganglia inflammatory processes
in channelopathies is still largely unsolved and should be properly
assessed by larger studies. Nevertheless, cardiac 123I-MIBG data
seem to support the presence of primary sympathetic nervous
system abnormalities in these patients.

Antagonism of Neuropeptide Y
Neurotramitters other than NE released by sympathetic efferent
fibers are an area of intense research. Co-release mainly occurs
during high-level neuronal stimulation (69). The most studied
sympathetic co-transmitter is neuropeptide Y (NPY) that has
a long biological half-life and can be measured in peripheral
blood (70). NYPwas shown to inhibit acetylcholine (ACh) release
from cardiac vagal postganglionic nerves (71–74) through Y2
receptors activation (75). NPY may also act on Y1 receptors on
ventricular cardiomyocytes, affecting their electrophysiological
properties. Optical mapping experiments in rats showed that
NPY steepens the action potential duration restitution curve
(76). Moreover, in Langendorff-perfused rat hearts with intact
innervation only the combination of Y1 receptor antagonist with
metoprolol was able to fully prevent the fall in VF threshold
produced by prolonged high-frequency stellate stimulation (76).
Finally, NPY is also a potent vasoconstrictor (77). In man, several
studies already reported that plasmatic NPY levels rise following
acute coronary syndromes (78) and in heart failure, showing
a positive correlation with severity of heart failure and 1 year
mortality (79, 80).

Correction of nNOS Imbalance
An additional neurotransmitter, which has recently gained
attention, is neuronal nitric oxide (nNO). Neuronal nitric oxide
synthase (nNOS), together with its adaptor protein (CAPON,
codified by the gene NOS1AP, nitric oxide synthase 1 adaptor
protein), is located in both intrinsic cardiac vagal neurons
and postganglionic sympathetic neurons of the stellate ganglia.
It acts locally as an intrinsic neuromodulator i.e., it is not
released in the synaptic space but it acts in the synaptic cleft
via stimulation of soluble guanylate cyclase, to generate cGMP.
In turn, this prompts opposite effects in parasympathetic and
sympathetic neurons. In parasympathetic neurons it leads to an
increased release of Ach (81, 82), while in sympathetic neurons
it causes a reduction in NE release (83, 84). Animal studies
using viral vectors showed that an increase in nNOS may reverse
impaired vagal (85) and exaggerated sympathetic drive (86, 87)
in the spontaneously hypertensive rat. Moreover, in guinea pig
overexpression of nNOS increased acetylcholine release and was
associated with a trend of improved survival following MI (88).
Interestingly, genetic studies not only consistently correlated
genetic variation in NOS1AP with QT-interval duration in
the general population (89–92), but also demonstrated their
association with the risk for sudden death in general population
(93) and the risk of drug-induced QT prolongation and
ventricular arrhythmia (94). Additionally, NOS1AP was proved

to be a genetic modifier in LQTS, both in a founder LQT1
population (95) and in a non-selected LQTS population
including different genotypes (96). Of note, NOS1AP gene is
also expressed at the cardiac level, and CAPON overexpression
in isolated guinea pig myocytes causes attenuation of L-type
calcium current, a slight increase in rapid delayed rectifier
current (IKr), and a shortening of action potential (97). So far,
an increase in L-type calcium current (which is also enhanced
by sympathetic activation) due to CAPON under expression has
been advocated as the main mechanism responsible for NOS1AP
genetic variant impact on QT interval duration and arrhythmias
susceptibility. Nevertheless, it is intriguing to speculate that in
LQTS patients (as well as in the general population), even in
absence of overt inflammatory changes within the stellate ganglia,
CAPON under expression (on genetic bases) may lead to an
increased NE release during sympathetic activation and therefore
an increased arrhythmic risk. Of note, the disruption in CAPON
expression in LQTS could also be the functional result of a mild
ganglionitis rather than the cause of it, potentially contributing
to explain the pro arrhythmic impact of the mild auto immune
mediated ganglionitis described by Rizzo et al. (63).

ADDITIONAL EFFECTS OF CARDIAC
SYMPATHETIC DENERVATION ON THE
HEART

Catecholamines, besides the arrhythmogenic potential,
physiologically modulate nearly all cardiac functions, including
inotropy, chronotropy, dromotropy, and lusitropy. Therefore,
before systematically proposing LCSD in man, several
experimental studies were performed in order to exclude
any potential detrimental effect on the heart. In conscious dogs
with a healed MI performing a submaximal exercise stress test,
left ventricular contractility (assessed by dP/dt max) was not
affected by left stellectomy (36). Moreover, LCSD did not reduce
resting heart rate (HR) or chronotropic competence during
effort. On the contrary, HR increase during exercise was slightly
(6%) greater after LCSD. This apparently paradoxical effect
was thought to be related to a controlateral reflex increase in
right stellate ganglion activity. In fact, due to the asymmetric
distributions of sympathetic cardiac nerves, the sinus node
is under a predominant right-sided sympathetic control (98).
In the same animal model (36) the maximal increase in HR
during exercise was, respectively, 19 and 26% lower as compared
to baseline (intact innervation) after bilateral and right only
stellectomy. Finally, albeit no specific data about AV conduction
were provided, the mean maximal HR reached (around 250
bpm) during effort after left stellectomy strongly argues against
a significant impact of left stellectomy on dromotropy during
sinus rhythm and in physiological conditions of sympathetic
activation. This finding was in agreement with previous studies
which showed that sympathetic innervation to the atria and the
AV node is provided by both right and left sympathetic chain
(99). Accordingly, recent data from patients with paroxysmal
atrial fibrillation (AF) show equivalent electrophysiological
effects of right and left stellate ganglion block (SGB) on both
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atria: unilateral temporary SGB with lidocaine slightly prolongs
atrial effective refractory period and consistently reduces AF
inducibility and AF episodes duration (100).

Finally, a last concern was that LCSD could lead to
post-denervation supersensitivity, a pro-arrhythmic condition
characterized by increased sensitivity of the left ventricle to
catecholamines after complete denervation. From a theoretical
point of view this possibility appeared unlikely, because
right-sided sympathetic nerves (preserved after LCSD) are
known to contribute to left ventricular innervation (101, 102).
Animal studies confirmed that catecholamine stores in the
myocardium were not completely depleted after LCSD (103,
104). Moreover, unilateral left stellectomy did not increase
either dP/dt max or the incidence of ventricular arrhythmias in
response to intravenous norepinephrine (105). Of note, LCSD is
a preganglionic denervation; therefore no ipsilateral sympathetic
efferent reinnervation is possible.

LCSD IN CHANNELOPATHIES

LCSD in Long QT Syndrome: Reported
Results
The first large-scale evaluation of LCSD efficacy in LQTS was
published in 1991 (106). Among the 85 reported patients, 99%
were symptomatic before surgery, including 60% who suffered at
least one aborted cardiac arrest (ACA). After LCSD, symptomatic
patients decreased from 99 to 45% (P < 0.0001), and the mean
number of cardiac events/patient dropped from 22 to 1. Of
note, there were no ICDs. Therefore, this report truly reflects
the impact of LCSD on SCD: it occurred in 8% of this high-
risk group during 6 years of mean follow-up. The largest series
of LQTS patients undergoing LCSD was reported in 2004 (107).
As in the previous study, 99% of the patients were symptomatic
before surgery, including 48% with a previous ACA and 75%
with recurrent syncope despite maximum-dose β-Blockers. The
majority were female (69%), the median age at surgery was 17
years and the mean QTc was 543± 65ms. The average follow-up
periods pre and post-LCSDwere 5 and 8 years, respectively. After
LCSD, 46% of the patients remained asymptomatic, syncope
occurred in 31%, ACA in 16%, and SCD in 7%. Mean yearly
number of cardiac events/patient dropped by 91% (P < 0.001).
Among the 5 patients with a preoperative ICD the median
number shocks/patient decreased from 25 to 0. Of note, 51
patients (35%) were genotyped, including 18 LQT1, 15 LQT2, 8
LQT3 and 9 patients with Jervell and Lange-Nielsen syndrome
(JLN). As expected, LCSD appeared to be more effective in LQT1
than in LQT2. Despite the very limited numbers, patients with
LQT3 and JLN did not seem to have a worse outcome compared
with LQT1 patients. Finally, after LCSD a clinically significant
mean reduction of QTc interval (39ms) was noticed. Neither
a preoperative QTc value ≥500ms nor a change <40ms were
associated with a higher risk of recurrences. On the other hand,
the persistence of a QTc ≥ 500ms within 6 months from surgery
appeared to carry a significantly higher risk of future events.

Subsequently, a large program of LCSD in LQTS was started
by Ackerman at the Mayo Clinic, with equally positive results

(108). In 2013, he reported a specific analysis on predictors
of recurrences after LCSD in LQTS (109). They studied 52
consecutive LQTS patients undergoing LCSD between 2005 and
2010 at Mayo Clinic (23 LQT1, 9 LTQ2, 4 LQT3, 9 carrying
multiple mutations, 3 JLN, and 4 genotype negative). All the
procedures were performed using the minimally invasive, video-
assisted thoracoscopic technique (VATS), and the sympathetic
chain was removed from T1 to T4. Mean age at surgery was 10
years, 54% were female and mean QTc pre LCSD was 528 ±

74ms. Most of them (61%) had LCSD as primary prevention
because of either high-risk conditions or β-Blocker intolerance.
This is a significant difference with the two previously reported
populations and reflects the growing confidence in the benefit
of the procedure. Overall, 12 subjects suffered cardiac events
after LCSD (mean follow-up 3.6 years). Among them, only 5
(10%) had no discernible reduction of the arrhythmic episodes
(true non-responders). These 5 high risk patients, all heavily
symptomatic before LCSD, included 3 LQT3 patients and 2 LQT1
patients with multiple mutations. All of them had a very early
onset of the disease (4 at birth, one in the first year of life) with
QTc values above 600ms. On the contrary, none of the 12 patients
who received LCSD for β-Blocker intolerance experienced events
during follow up.

In the following years, other centers all over the word started
to perform LCSD and to report their results, overall confirming
the positive post-procedural outcomes (110–112). The majority
were small case series, yet in 2015 Waddell-Smith et al. (113)
reported about 40 LQTS patients treated with thoracoscopic
LCSD in New Zealand. LCSD related side effects and the quality
of life after LCSD were the main topics analyzed. Most patients
were female (70%) and LQT1 (57%), 11 were LQT2, 1 LQT3 and
5 had a negative genetic test. Half of the patients were completely
asymptomatic before the procedure, and only 2 (5%) had surgery
because of recurrences on β- Blockers. The two main indications
for LCSDwere β-Blocker intolerance or contraindication (35% of
the patients) and β-Blocker non-adherence (25%). Interestingly,
10% of the patients specifically requested the procedure to
their cardiologists either to increase their sense of protection
or because of their desire to perform high level sports. These
data confirm the diffusion and the increase in confidence in
the procedure. During a median follow up of 2.5 years only 2
patients (5%), including 1 JLN, had arrhythmic events (syncopal
episodes). All patients reported high levels of postoperative
satisfaction. Table 1 summarizes indications and results of the
largest case series reported of LCSD in LQTS with at least 1 year
of follow up.

LCSD in Long QT Syndrome: Our Approach
LCSD is now a mainstay in the management of LQTS patients
(117, 118). Most experts agree that whenever ICD shocks occur
in LQTS patients on optimized medical therapy, LCSD should be
offered. We believe that, considering the high impact of LCSD on
quality of life in this setting, the procedure should be undertaken
without delay after the first breakthrough ICD intervention.
ICD recurrences can be very detrimental and may lead to
depression and even to suicidal attempts, particularly in these
adolescents already predisposed to both anxiety and depression
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TABLE 1 | Largest case series reported of LCSD in LQTS (at least 10 patients with at least 1 year of follow up).

References N % Primary prevention ICD Mean follow up Overall cardiac events* ACA/ICD therapies SCD Resection sparing T1

Schwartz et al. (106) 85 1% 0% 6 years 45% 0% 8% 0%

Ouriel et al. (114) 10 10% 0% 1.3 years 10% 0% 10% 0%

Schwartz et al. (107) 147 1% 3% 8 years 54% 16% 7% 0%

Li et al. (110) 11 0% 0% 3 years 45% 0% 9% 100%

Collura et al. (108) 18 50% 56% 1.5 years 17% 17% 0% 0%

Bos et al. (109) 52 61% 31% 3.6 years 23% nr 2% 0%

Hofferberth et al. (111) 13 8% nr 3 years 38% 23% 0% 92%

Olde Nordkamp et al. (112) 12 8% 67% 2 years 50% 25% 8% 0%

Waddell-Smith et al. (113) 40 95% nr 2.5 years** 5% 0% 0% 72%

Jang et al. (115) 14 57% nr 2.5 years 7% 7% 0% 0%

*Syncope, aborted cardiac arrest, sudden cardiac death. **Median follow-up. ACA, aborted cardiac arrest; ICD, implantable cardioverter defibrillator; nr, not reported; SCD, sudden

cardiac death. The study by Antiel et al. (116) was not included despite describing 41 LQTS patients who received LCSD because specific data about the arrhythmic burden pre-post

LCSD in the subgroup of LQTS patients were not provided.

because of the underlying disease (119, 120). Moreover, the acute
proarrhythmic potential of ICD shocks due to pain perception,
fear and subsequent increase in the sympathetic drive on the
heart should never be neglected, as will be discussed in detail for
CPVT patients. The management of subjects with a first syncopal
episode occurring despite maximum tolerated dose β-Blocker
therapy is more challenging. As a referral group with a long-
standing experience in the treatment of LQTS patients, we advise
caution before directly implanting an ICD in these cases. Instead,
a careful clinical evaluation is needed. Due to its high efficacy
and optimal tolerability, we believe that LCSD should be offered
first, clearly explaining to the patients and their families that the
procedure is not an alternative to ICD implantation (that may
always be considered in a later stage) and that the overall risk
of life-threatening events after LCSD is low, unless the patient
shows characteristics of high risk. At the same time, the life-
spanning risk of complications and psychological consequences
related to ICD implantation in these young patients is high (121)
and should be properly acknowledged during patient and family
counseling. Overall, a proper patient-physician communication
in this setting requires to offer LCSD as therapeutic option even
if the center is not performing the procedure as an inside facility.
Ignorance and/or omission may carry medicolegal implications
for the physician (122). On the other hand, in the case of markers
of high risk such as onset of the symptoms in the first year of
life and/or the persistence of QTc values exceeding 550ms after
LCSD, an ICD could be considered immediately after LCSD.
Another difficult issue is the management of patients who never
suffered arrhythmic episodes on therapy (and even before) but
with either high risk LQTS phenotype or β-blocker intolerance,
which represents the so-called primary prevention. In these cases
LCSD should be offered before ICD implantation, with the clear
intention to serve as bridge to an ICD in the most severe cases. Of
course, additional pharmacological strategies such as mexiletine,
already proposed in 1995 (123) and now widely used (124–126)
should be offered as well, according to the genotype and the
specific mutation. Finally, an additional indication for LCSD in
LQTS is β-Blocker non-compliance. Generally, patients and their

families managed in referral centers are well-instructed about
the importance of strictly adhering to the prescribed medical
therapy. Nevertheless, young subjects, particularly adolescents,
are challenging to manage and may refuse therapy. Since
β-Blocker non-compliance is a very well-defined risk factor
for arrhythmic events in LQTS (127), if suspected and not
modifiable, this condition should prompt to consider LCSD as
additional protectivemeasure. Concerning the indication to right
cardiac sympathetic denervation (RCSD) in LQTS, we reserve
it for patients not responding to LCSD. We discourage RCSD
or a direct bilateral cardiac sympathetic denervation (BCSD) in
patients not carrying an ICD (or pacemaker) due to the potential
pro-arrhythmic effect of the induced (and largely unpredictable)
bradycardia, particularly in LQT2 and LQT3 patients.

LCSD in Catecholaminergic Polymorphic
Ventricular Tachycardia
The efficacy of LCSD in CPVT is not surprising from
a pathophysiological point of view. Indeed, the disease is
characterized by an intrinsic increase in the sensitivity of the
heart to catecholamines due to mutations affecting the diastolic
release of calcium from the sarcoplasmic reticulum. The first
case series (3 patients) describing the long-lasting efficacy of
LCSD in high risk CVPT was published in 2008 (128). We
subsequently reported in 2015 the largest case series of LCSD in
CPVT (129). It was a multicentric, international study involving
63 CPVT patients (71% RyR2 positive, 8% CASQ2 positive)
who underwent LCSD between 1988 and 2014 at 11 centers
worldwide. The majority (n = 54, 86%) had the procedure
in secondary prevention, 97% were on β-Blockers, 24% on
flecainide. The median post-LCSD follow-up was 37 months.
In the 9 asymptomatic patients there were no cardiac events
during follow-up. Among the 54 patients with prior major
cardiac events either on (n = 38) or off (n = 16) optimal
medical therapy, 13 (24%) had at least 1 recurrence, but only 1
patient died suddenly (after having been switched fromnadolol to
metoprolol). Specifically, the percentage of patients with cardiac
events despite optimal medical therapy (n = 38) was reduced
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from 100 to 32% (P < 0.001) after LCSD, and among 29 patients
with a pre-surgical ICD, the rate of shocks dropped by 93%
from 3.6 to 0.6 per person per year (P < 0.001). Among the
13 patients with cardiac events after LCSD, only 5 (8%) had
no reduction in the number of events as compared to before
LCSD (true non-responders). Importantly, the only predictor
of response was the extension of LCSD: 71% of the 7 patients
with incomplete LCSD had recurrences as compared to 17%
of those with a complete LCSD (P < 0.01). Among the 38
most severe patients, 100% of those with incomplete LCSD
had recurrences (Figure 2). The most common reason for not
performing a complete denervation was to reduce the risk of
Horner syndrome. This is not justified since the incidence of
permanent Horner syndrome when removing only the lower part
of the stellate ganglion (T1) is extremely low (<2%). On the other
hand, the antiarrhythmic protection when T1 is spared seems to
be significantly lower, in agreement with pre-clinical data (130).
In a subsequent exploratory sub analysis of the same population
we focused on the 38 patients with an ICD (131). Our preliminary
data suggest a reduction in supraventricular arrhythmias (SVA)
leading to inappropriate ICD shocks after LCSD. Of course, this
observation needs to be confirmed in a larger group of CPVT
patients, but it seems very plausible from a pathophysiological
point of view. Atrial arrhythmias (both atrial tachycardia and AF)
in CPVT are typically triggered by catecholamines in the setting
of structurally normal atria. Moreover, experimental animal
models suggest that LCSD may increase the threshold for atrial
arrhythmias onset and maintenance and reduce ventricular rate
during atrial fibrillation (132–134).

FIGURE 2 | Percentages of recurrences after left cardiac sympathetic

denervation (LCSD) in 38 CPVT patients who had previously suffered major

cardiac events despite optimal medical therapy. The majority received a

complete LCSD (n = 33), the remaining (n = 5) an incomplete LCSD. Modified

from De Ferrari et al. (129) with permission.

Subsequently, a multicentric pediatric registry including
18 CPVT patients undergoing LCSD confirmed our results,
showing no recurrences of ventricular arrhythmias in 89% of the
subjects (135).

LCSD in Catecholaminergic Polymorphic
Ventricular Tachycardia: our Approach
LCSD is now an established therapy also for CPVT (117,
118). Our recommendations for LCSD in CPVT are similar to
those already discussed for LQTS (first ICD shock or syncope
on optimized medical therapy, β-Blockers intolerance or non-
compliance), bearing inmind that the decision to implant an ICD
in CPVT patients must be considered evenmore carefully than in
LQTS. Indeed, due to the exquisite sensitiveness to catecholamine
of their hearts, combined with a generally good hemodynamic
tolerability of both rapid polymorphic VT and bidirectional
tachycardia (which usually precede VF), CPVT patients are at
high risk of electrical storms. This happens because the pain
and the fear of the first ICD shock, which generally occurs in
a condition of preserved consciousness, elicit a massive neural
release of catecholamines, starting a vicious circle. As a matter
of fact, in our registry of LCSD in CPVT (and therefore in an
already selected subgroup of high-risk patients) we found that
36% of the patients who received an ICD before LCSD suffered
at least one electrical storm or end of treatment condition (136).
On the contrary, among the 26 pts with no ICD before LCSD,
excluding two who had an electrical storm as first manifestation
of the disease, none had such episodes on medical therapy.
In agreement with this concept, sporadic cases of death in
CPVT patients because of ongoing ventricular arrhythmias and
exhaustion of ICD shocks have been reported for over 10 years
(137–139). Very recently, the largest CPVT meta-analysis ever
published (140) including 503 patients with an ICD (median age
15 years) reported a 1.4% mortality rate during follow-up, driven
by 4 deaths due to electrical storms. The high incidence of both
electrical storms (19.6%) and inappropriate shocks (20.8%) in
trans venous ICD recipients is in full agreement with our data
(129), as well as the disquieting rate of ICD-related complications
(32.4%). Only 3 ICD patients had a subcutaneous ICD (S-ICD); 2
of them received inappropriate shocks due T-wave oversensing.
Of note, the mortality rate among the 412 patients treated
without ICD was similar to those with an ICD (2%).

Finally, beyond being potentially pro-arrhythmic and often
not necessary, ICD shocks in CPVT patients may also be
ineffective. Indeed, rapid polymorphic VT or bidirectional VT
episodes may be not only self-limiting with the interruption of
the stressor (such as physical activity) without the need for shock,
but could also be less susceptible to cardioversion compared to
VF episodes. Miyake et al. (141) demonstrated that among 10
CPVT patients who received a total of 75 appropriate shocks,
only 57% of the shocks were successful in primary termination
of the arrhythmias. The underlying rhythm in all successful ICD
shocks at first attempt was VF, while no episode of polymorphic
VT or bidirectional VT was successfully treated at the first
attempt. Subsequently, Roses-Noguer F et al. (142) found an even
lower success rate of the first appropriate ICD shock in CPVT
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(32%), confirming the ineffectiveness on triggered arrhythmias as
compared to VF. Moreover, also antitachycardia pacing therapies
(ATPs), as expected, proved to be ineffective in CPVT.

For all the above mentioned reasons, the management of high
risk CPVT patients is particularly challenging. An optimized
antiadrenergic therapy based on the clinical phenotype should
always be the main therapeutic goal, whether or not the patient
is implanted with an ICD (or is a candidate to). Indeed, in
complete agreement with the pathophysiology of the disease,
β-Blockers (143) and LCSD (129) are the only therapeutic
interventions with a proven efficacy on SCD, aborted cardiac
arrest and ICD shocks. Flecainide, despite promising in vitro
(144) and in vivo (135, 144–147) data mainly showing its
efficacy on effort induced arrhythmias, still lacks a validation on
hard clinical end points. Nevertheless, a first pharmacological
attempt with flecainide in association to β-adrenergic blockade
seems reasonable in β-Blocker non-responders, particularly if
the patient has already been implanted with an ICD. Finally,
as for LQTS patients, a careful ICD programming with a single
VF zone, long detection times and no ATPs, is crucial in
CPVT patients.

CONCLUSIONS

LCSD was proposed over one century ago for the treatment of
angina pectoris. The antiarrhythmic potential of the technique,
albeit evident since the first procedure by Jonnesco in 1916, took
long to be fully appreciated (148). For many years the studies on
LCSD were considered with skepticism, especially because there
seemed to be just one group to support it. Finally, clinical data
from well-conducted multicenter registries largely confirmed the

preclinical findings, showing that LCSD is an effective treatment
for drug-refractory ventricular arrhythmias in both LQTS and
CPVT and LCSD is now recommended in recent guidelines
(117, 118). Not surprisingly, considered themechanism of action,
the efficacy and potential indication of LCSD in channelopathies
goes far beyond secondary prevention, potentially including
many still asymptomatic patients with high-risk features for SCD
despite optimized medical therapy. Regardless of this consistent
body of evidence, LCSD is still an underutilized resource, as
opposed to the often abused use of ICD in the same group of
patients. From the technical point of view, the advantages of the
thoracoscopic approach are such that it is difficult to see much
room for different surgical approaches that might carry greater
risks (149). LCSD can not only improve quality of life but also
prevent fatal events that may still occur in patients with ICD due
to the vicious circle of catecholamine-induced and maintained
electrical storms.
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