788 research outputs found

    Light scattering from a rough metal surface: theory and experiment

    Get PDF
    There is still great interest in the determination of microtopographic properties of rough metallic surfaces from light scattering measurements. According to Beckmann–Kirchhoff theory a clear relationship is established between the in-plane angular scattered light intensity and the statistical properties of the surface. We discuss one way to invert this relationship, and we introduce a new iterative procedure to retrieve the height autocorrelation function even for a very rough metallic surface (rms surface roughness of the same order of the optical wavelength). The procedure is eventually applied to the experimental data of a known metallic surface for validation

    A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair

    Get PDF
    Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D-bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA). GelMA-cECM bioinks print uniformly with a homogeneous distribution of cECM and hCPCs. hCPCs maintain >75% viability and incorporation of cECM within patches results in a 30-fold increase in cardiogenic gene expression of hCPCs compared to hCPCs grown in pure GelMA patches. Conditioned media from GelMA-cECM patches show increased angiogenic potential (>2-fold) over GelMA alone, as seen by improved endothelial cell tube formation. Finally, patches are retained on rat hearts and show vascularization over 14 d in vivo. This work shows the successful bioprinting and implementation of cECM-hCPC patches for potential use in repairing damaged myocardium

    Natural risk assessment and decision planning for disaster mitigation

    No full text
    International audienceIn this paper, decisional models are introduced aiming at defining a general framework for natural disaster mitigation. More specifically, an integrated approach based on system modelling and optimal resource assignment is presented in order to support the decision makers in pre-operational and real-time management of forest fire emergencies. Some strategies for pre-operative and real time risk management will be described and formalized as optimal resource assignment problems. To this end, some models capable to describe the resources dynamics will be introduced, both in pre-operative phase and in real-time phase

    Building an artificial cardiac microenvironment. A focus on the extracellular matrix

    Get PDF
    The increased knowledge in cell signals and stem cell differentiation, together with the development of new technologies, such as 3D bioprinting, has made the generation of artificial tissues more feasible for in vitro studies and in vivo applications. In the human body, cell fate, function, and survival are determined by the microenvironment, a rich and complex network composed of extracellular matrix (ECM), different cell types, and soluble factors. They all interconnect and communicate, receiving and sending signals, modulating and responding to cues. In the cardiovascular field, the culture of stem cells in vitro and their differentiation into cardiac phenotypes is well established, although differentiated cardiomyocytes often lack the functional maturation and structural organization typical of the adult myocardium. The recreation of an artificial microenvironment as similar as possible to the native tissue, though, has been shown to partly overcome these limitations, and can be obtained through the proper combination of ECM molecules, different cell types, bioavailability of growth factors (GFs), as well as appropriate mechanical and geometrical stimuli. This review will focus on the role of the ECM in the regulation of cardiac differentiation, will provide new insights on the role of supporting cells in the generation of 3D artificial tissues, and will also present a selection of the latest approaches to recreate a cardiac microenvironment in vitro through 3D bioprinting approaches

    Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions

    Get PDF
    The solubilities of volatiles (H_2O, CO_2, S, F, and Cl) in basaltic melts are dependent on variables such as temperature, pressure, melt composition, and redox state. Accordingly, volatile concentrations can change dramatically during the various stages of a magma's existence: from generation, to ascent through the mantle and crust, to final eruption at the Earth's surface. Olivine-hosted melt inclusions have the potential to preserve volatile concentrations at the time of entrapment due to the protection afforded by the host olivine against decompression and changes to the oxidation state of the external magma. Recent studies, however, have demonstrated that rapid diffusive re-equilibration of H_2O and oxygen fugacity (f_(O_2)) can occur within olivine-hosted melt inclusions. Here we present volatile, hydrogen isotope, and major element data from dehydration experiments and a quantitative model that assesses proposed mechanisms for diffusive re-equilibration of H_2O and f_(O_2) in olivine-hosted melt inclusions. Our comprehensive set of data for the behavior of common magmatic volatiles (H_2O, CO_2, F, Cl, and S) demonstrates that post-entrapment modification of CO_2, and to a lesser extent S, can also occur. We show that the CO_2 and S concentrations within an included melt decrease with progressive diffusive H_2O loss, and propose that this occurs due to dehydration-induced changes to the internal pressure of the inclusion. Therefore, deriving accurate estimates for pre-eruptive CO_2 and S concentrations from olivine-hosted melt inclusions requires accounting for the amount of CO_2 and S hosted in vapor bubbles. We find, however, that Cl and F concentrations in olivine-hosted melt inclusions are not affected by diffusive re-equilibration through the host olivine nor by dehydration-induced pressure changes within the melt inclusion. Our results indicate that measured H_2O, CO_2 and S concentrations and Fe^(3+)/ΣFe ratios of included melts are not necessarily representative of the melt at the time of entrapment and thus are not reliable proxies for upper mantle conditions

    Experimental and Numerical Performance Survey of a MW-Scale Supercritical CO2 Compressor Operating in Near-Critical Conditions

    Get PDF
    Closed power cycles based on carbon dioxide in supercritical conditions (sCO2 in the following) are experiencing a growing scientific, technical and industrial interest, due to the high energy conversion efficiency and components compactness. Despite these advantages, the use of a working fluid operating in proximity to the critical point, especially for the compressor, entails multidisciplinary challenges related to the severe non-ideality of the supercritical fluid, which includes the potential onset of phase change at the impeller intake. On the technical and industrial grounds, the phase-transition might dramatically affect the aerodynamics, the performance and the rangeability of the compressor. On the scientific ground, the modelling of two-phase flows in transonic/supersonic conditions still remains an open issue that demands a thorough experimental assessment. This work illustrates the results of a wide experimental campaign focused on the evaluation of the operative map of a MW-scale high-load sCO2 compressor operating in plant-representative conditions, i.e. in proximity to the critical point (P = 79.8 bar, T = 33°C), designed in the frame of the sCO2Flex project, EU Horizon 2020 funded program (grant agreement #764690). In the design process, the machine had been object of a thorough computational investigation, performed by using a homogeneous equilibrium model equipped with a barotropic equation of state, which revealed a significant impact of the phase change on the compressor aerodynamics and on its rangeability for flow rates higher than the design one. Such phenomena are connected to the sudden drop of the speed of sound, originated when the fluid thermodynamic condition crosses the saturation line, and they weaken as the compressor loading reduces. Experiments carried out on a first of a kind 5 MW sCO2 prototype compressor manufactured and tested by Baker Hughes in 2021 remarkably well matched the predicted compressor performance and, especially, the anticipated and sudden choking of the compressor at nominal peripheral Mach number. Results demonstrates experimentally, for the first time ever, the effects of the phase-change on the operation of a realistic sCO2 compressor, also providing significant insights on the predictive capabilities of the physical models employed for the calculation of two-phase flows in this class of machines

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    A ruptured ectopic pregnancy in a patient with an intrauterine device: A case report.

    Get PDF
    Intrauterine devices (IUDs) are used worldwide. The 2 types that are used are the levonorgestrel IUD and a copper containing IUD. This is a case study of a 30-year-old female with a levonorgestrel IUD who was diagnosed with a ruptured ectopic pregnancy in the emergency department (ED). Point-of-care urine pregnancy test and point-of-care ultrasound (POCUS) were vital in making this diagnosis and should be utilized in patients assigned female at birth who present with abdominal pain
    • …
    corecore