49 research outputs found

    Petrology and major element geochemistry of basaltic glasses from the Blanco Trough, northeast Pacific

    Get PDF
    The original electron microprobe analyses of suite of basaltic glasses recovered in 1968 by W.G. Melson and co-workers from the Blanco Trough have extremely unusual characteristics. Their compositions plot in a region of the normative Ol-Di-Pl-SiO2 tetrahedron which suggests that they represent liquids in equilibrium with an upper mantle assemblage of olivine + orthopyroxene at 10-15 kb. Given the present state of controversy surrounding the composition and depth of origin of primary MORB, natural examples of such liquids would be very important. The major element variations observed in the suite imply that the dominant phases are olivine and an iron-aluminum rich spinel. The crystal/melt partitioning data are consistent with an unusually large Fe2O3 component in the melt, which could help to explain the variation in liquidus phases, and thus the suite\u27s position in Ol-Di-Pl-SiO2 space. New analyses of the original samples, performed on the microprobe at Rensselaer Polytechnic Institute, have failed to reproduce the original anomalies. The R.P.I. data does show that the glasses are slightly enriched in FeO* giving them unusually low Mg/(Mg + Fe) ratios for otherwise primitive looking mid-ocean ridge tholeiites. The new analyses plot near the Ol-Di join when projected from PI onto the Ol-Di-SiO2 plane, a region not uncommon for primitive MORB. The disagreement between the two data sets appears to be the result of a transposition of the FeO* and CaO abundances in the Smithsonian analyses prior to their publication by Melson et al. (1977), in addition to minor differences in calibration between the two laboratories. All of the Blanco Trough glasses that were studied in thin section contain olivine, while 61.5% are saturated in chromian spinel. Some of the olivines display deformation bands and possible fluid inclusions, indicating that they are probably cumulate xenocrysts. In contrast with most other MORB suites, plagioclase is a major phenocryst phase in only one sample and is absent completely from 38.5% of the thin sections. Based on petrography, the first phase to appear is olivine, followed by assemblages of olivine + chromian spinel, olivine + chromian spinel + plagioclase and olivine + plagioclase. Although the appearance and disappearance of phenocryst phases agrees very well with the phase equilibria in the system An-Fo-Di, no simple relationship exists between the Mg/(Mg + Fe) ratio of the liquid and the phenocryst assemblage. Least-squares mixing models show that the primitive and evolved ends of the suite cannot be related simply by the fractional crystallization of an assemblage of olivine + chromian spinel + plagioclase. The best fit is obtained if clinopyroxene is added to the crystallizing assemblage, although it is not found as a phenocryst phase in any of the samples. The problem of needing to crystallize significant amounts of clinopyroxene to explain a suite of MORB which does not contain clinopyroxene is not unique to this study, but has been recognized by other workers for a number of years. The petrogenesis of the suite appears to involve several stages, in addition to fractional crystallization of olivine, chromian spinel and plagioclase in a shallow level magma chamber. Polybaric crystallization of several batches of parental magma, followed by homogenization during episodes of magma-mixing seems likely

    Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 185 (2016): 9-20, doi:10.1016/j.gca.2016.01.030.We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250–1523 °C, pressures of 1.0–3.5 GPa and oxygen fugacities at iron–wustite and wustite–magnetite. The total observed range of KdPb is 4.0–66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2–39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 − 119*P in GPa)*(1/FeO − 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the “natural” partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.This work would not have been done without the support of NSF, through Grant EAR-0635530.2017-02-1

    Experimental investigations of differentiation processes in the terrestrial planets

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1996.Includes bibliographical references.by Glenn Allan Gaetani.Ph.D

    Serpentinite-derived slab fluids control the oxidation state of the subarc mantle

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G

    Factors affecting B/Ca ratios in synthetic aragonite

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Chemical Geology 437 (2016): 67-76, doi:10.1016/j.chemgeo.2016.05.007.Measurements of B/Ca ratios in marine carbonates have been suggested to record seawater carbonate chemistry, however experimental calibration of such proxies based on inorganic partitioning remains limited. Here we conducted a series of synthetic aragonite precipitation experiments to evaluate the factors influencing the partitioning of B/Ca between aragonite and seawater. Our results indicate that the B/Ca ratio of synthetic aragonites depends primarily on the relative concentrations of borate and carbonate ions in the solution from which the aragonite precipitates; not on bicarbonate concentration as has been previously suggested. The influence of temperature was not significant over the range investigated (20 – 40°C), however, partitioning may be influenced by saturation state (and/or growth rate). Based on our experimental results, we suggest that aragonite B/Ca ratios can be utilized as a proxy of [CO32-]. Boron isotopic composition (δ11B) is an established pH proxy, thus B/Ca and δ11B together allow the full carbonate chemistry of the solution from which the aragonite precipitated to be calculated. To the extent that aragonite precipitation by marine organisms is affected by seawater chemistry, B/Ca may also prove useful in reconstructing seawater chemistry. A simplified boron purification protocol based on amberlite resin and the organic buffer TRIS is also described.This work was supported by the Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies. Research conducted at WHOI was supported by NSF grant OCE-1338320. M.H. was supported by an ARC Super Science Fellowship and an NSF International Postdoctoral Fellowship. T.D. was supported by a NSF Graduate Research Fellowship. M.M. was supported by a Western Australian Premiers Fellowship and an ARC Laureate Fellowship

    Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions

    Get PDF
    The solubilities of volatiles (H_2O, CO_2, S, F, and Cl) in basaltic melts are dependent on variables such as temperature, pressure, melt composition, and redox state. Accordingly, volatile concentrations can change dramatically during the various stages of a magma's existence: from generation, to ascent through the mantle and crust, to final eruption at the Earth's surface. Olivine-hosted melt inclusions have the potential to preserve volatile concentrations at the time of entrapment due to the protection afforded by the host olivine against decompression and changes to the oxidation state of the external magma. Recent studies, however, have demonstrated that rapid diffusive re-equilibration of H_2O and oxygen fugacity (f_(O_2)) can occur within olivine-hosted melt inclusions. Here we present volatile, hydrogen isotope, and major element data from dehydration experiments and a quantitative model that assesses proposed mechanisms for diffusive re-equilibration of H_2O and f_(O_2) in olivine-hosted melt inclusions. Our comprehensive set of data for the behavior of common magmatic volatiles (H_2O, CO_2, F, Cl, and S) demonstrates that post-entrapment modification of CO_2, and to a lesser extent S, can also occur. We show that the CO_2 and S concentrations within an included melt decrease with progressive diffusive H_2O loss, and propose that this occurs due to dehydration-induced changes to the internal pressure of the inclusion. Therefore, deriving accurate estimates for pre-eruptive CO_2 and S concentrations from olivine-hosted melt inclusions requires accounting for the amount of CO_2 and S hosted in vapor bubbles. We find, however, that Cl and F concentrations in olivine-hosted melt inclusions are not affected by diffusive re-equilibration through the host olivine nor by dehydration-induced pressure changes within the melt inclusion. Our results indicate that measured H_2O, CO_2 and S concentrations and Fe^(3+)/ΣFe ratios of included melts are not necessarily representative of the melt at the time of entrapment and thus are not reliable proxies for upper mantle conditions

    Halogen (F, Cl) concentrations and Sr-Nd-Pb-B isotopes of the basaltic andesites from the southern Okinawa Trough: implications for the recycling of subducted serpentinites

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(3), (2021): e2021JB021709, https://doi.org/10.1029/2021JB021709.Serpentinites are increasingly recognized as playing an important role in the global geochemical cycle. However, discriminating the contributions of serpentinites to arc magmas from those of other subduction components is challenging. The Okinawa Trough is a back-arc basin developed behind the Ryukyu subduction zone, where magmas are extensively affected by sediment subduction. In this study, we reported the F-Cl concentrations and Sr-Nd-Pb-B isotopes of basaltic andesites from the Yaeyama Graben, Yonaguni Graben, and Irabu Knoll in the southern Okinawa Trough. The Irabu Knoll lavas show the most enrichment of fluid-mobile elements and F ± Cl, and have the heaviest B isotopes (δ11B: +6.6 ± 1.5‰). They also have decoupled Sr-Nd isotopes: higher 87Sr/86Sr (∼0.7049) but have no obvious decrease of 143Nd/144Nd (∼0.5128). Results from slab dehydration modeling and mixing calculations suggest that the heavy δ11B in the Irabu Knoll lavas is not consistent with fluids derived from altered oceanic crust (AOC), sediments, or wedge serpentinites (formed in the mantle wedge), but rather from slab serpentinites (formed within the subducting plate); sediments control the subduction input of Nd, whereas the decoupled Sr-Nd isotopes are most likely due to the excess radiogenic Sr carried by AOC fluids. Our results imply that recycling of serpentinite fluids and AOC fluids are usually coupled in subduction zones, as the arc lavas influenced by subducted serpentinite generally show Sr-Nd isotopes decoupling. The large variation of Sr-Nd-B isotopes observed in a relatively localized area is consistent with a focused migration through the mantle wedge of components from multiple sources.This study was funded by the National Natural Science Foundation of China (91958213), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42020402), the China Postdoctoral Science Foundation (2019M662454), the Shandong Provincial Natural Science Foundation, China (ZR2020QD068 and ZR2020MD068), the International Partnership Program of the Chinese Academy of Sciences (133137KYSB20170003), the Special Fund for the Taishan Scholar Program of Shandong Province (ts201511061), and the China Scholarship Council (201709410550).2021-09-1

    Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 121 (2016): 5776–5793, doi:10.1002/2016JB013122.Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.National Science Foundation Grant Numbers: 1250338, 1551300; Basic Energy Sciences Grant Number: DEFG0207ER15916; Advanced Photon Source Grant Number: DE-AC02-06CH113572017-02-2
    corecore