34 research outputs found

    The impact of shift-work light conditions on tissue-specific circadian rhythms of canonical clock genes: insights from a mouse model study [version 2; peer review: 2 approved]

    Get PDF
    Background: The natural day-night cycle synchronizes our circadian rhythms, but modern work practices like night shifts disrupt this pattern, leading to increased exposure to nighttime light. This exposure is linked to various health issues. While some studies have explored the effects of night shifts on human circadian rhythms, there is limited research on the consequences of long-term exposure to shift-work light conditions. Rodents can provide valuable insights into these effects. This study aimed to examine how short- or long-term exposure to rotating shifts and chronic jetlag affects the core circadian oscillators in the liver and skin of mammals. Methods: C57BL/6J male mice were subjected to simulated shift-work light conditions, including short-term or long-term rotating shifts and chronic jet-lag conditions. Liver and skin samples were collected every four hours over a 24-hour period on the second day of constant darkness. RNA was extracted and qRT-PCR analysis was conducted to measure the circadian gene expression in liver and skin tissues. Circadian rhythm analysis using CircaCompare compared the control group to mice exposed to shift-work light conditions. Results: The liver's circadian clock is significantly altered in mice under long-term rotating shift conditions, with a lesser but still noticeable impact in mice experiencing chronic jetlag. However, short-term rotating shift conditions do not significantly affect the liver's circadian clock. Conversely, all three simulated shift conditions affect the skin's circadian clock, indicating that the skin clock is more sensitive to shift-work light conditions than the liver clock. Compared to the liver, the skin's circadian clock is greatly affected by long-term rotating shift conditions. Conclusions: The study findings indicate more pronounced disturbances in the canonical clock genes of the skin compared to the liver under simulated shift-work light conditions. These results suggest that the skin clock is more vulnerable to the effects of shift-work

    The impact of shift-work light conditions on tissue-specific circadian rhythms of canonical clock genes: insights from a mouse model study [version 3; peer review: 2 approved]

    Get PDF
    Background: The natural day-night cycle synchronizes our circadian rhythms, but modern work practices like night shifts disrupt this pattern, leading to increased exposure to nighttime light. This exposure is linked to various health issues. While some studies have explored the effects of night shifts on human circadian rhythms, there is limited research on the consequences of long-term exposure to shift-work light conditions. Rodents can provide valuable insights into these effects. This study aimed to examine how short- or long-term exposure to rotating shifts and chronic jetlag affects the core circadian oscillators in the liver and skin of mammals. Methods: C57BL/6J male mice were subjected to simulated shift-work light conditions, including short-term or long-term rotating shifts and chronic jet-lag conditions. Liver and skin samples were collected every four hours over a 24-hour period on the second day of constant darkness. RNA was extracted and qRT-PCR analysis was conducted to measure the circadian gene expression in liver and skin tissues. Circadian rhythm analysis using CircaCompare compared the control group to mice exposed to shift-work light conditions. Results: The liver's circadian clock is significantly altered in mice under long-term rotating shift conditions, with a lesser but still noticeable impact in mice experiencing chronic jetlag. However, short-term rotating shift conditions do not significantly affect the liver's circadian clock. Conversely, all three simulated shift conditions affect the skin's circadian clock, indicating that the skin clock is more sensitive to shift-work light conditions than the liver clock. Compared to the liver, the skin's circadian clock is greatly affected by long-term rotating shift conditions. Conclusions: The study findings indicate more pronounced disturbances in the canonical clock genes of the skin compared to the liver under simulated shift-work light conditions. These results suggest that the skin clock is more vulnerable to the effects of shift-work

    Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells

    Get PDF
    The nucleotide excision repair pathway removes ultraviolet (UV) photoproducts from the human genome in the form of short oligonucleotides ∼30 nt in length. Because there are limitations to many of the currently available methods for investigating UV photoproduct repair in vivo, we developed a convenient non-radioisotopic method to directly detect DNA excision repair events in human cells. The approach involves extraction of oligonucleotides from UV-irradiated cells, DNA end-labeling with biotin and streptavidin-mediated chemiluminescent detection of the excised UV photoproduct-containing oligonucleotides that are released from the genome during excision repair. Our novel approach is robust, with essentially no signal in the absence of UV or a functional excision repair system. Furthermore, our non-radioisotopic methodology allows for the sensitive detection of excision products within minutes following UV irradiation and does not require additional enrichment steps such as immunoprecipitation. Finally, this technique allows for quantitative measurements of excision repair in human cells. We suggest that the new techniques presented here will be a useful and powerful approach for studying the mechanism of human nucleotide excision repair in vivo

    Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock

    Get PDF
    The mammalian circadian clock is based on a transcription–translation feedback loop (TTFL) in which CLOCK and BMAL1 proteins act as transcriptional activators of Cryptochrome and Period genes, which encode proteins that repress CLOCK–BMAL1 with a periodicity of ∼24 h. In this model, the mechanistic roles of CRY and PER are unclear. Here, we used a controlled targeting system to introduce CRY1 or PER2 into the nuclei of mouse cells with defined circadian genotypes to characterize the functions of CRY and PER. Our data show that CRY is the primary repressor in the TTFL: It binds to CLOCK–BMAL1 at the promoter and inhibits CLOCK–BMAL1-dependent transcription without dissociating the complex (“blocking”-type repression). PER alone has no effect on CLOCK–BMAL1-activated transcription. However, in the presence of CRY, nuclear entry of PER inhibits transcription by displacing CLOCK–BMAL1 from the promoter (“displacement”-type repression). In light of these findings, we propose a new model for the mammalian circadian clock in which the negative arm of the TTFL proceeds by two different mechanisms during the circadian cycle

    Circadian Clock, Cancer, and Chemotherapy

    Get PDF
    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs

    Author Correction: Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2021-11-25, collection 2021-12, pub-electronic 2021-12-08, online 2021-12-08Publication status: Publishe

    Association between the unfolded protein response, induced by 2-deoxyglucose, and hypersensitivity to cisplatin: a mechanistic study employing molecular genomics

    No full text
    The specific signaling that occurs between the endoplasmic reticulum (ER) and the nucleus in response to ER stress is known as the unfolded protein response (UPR). Specific induction of GRP78 (glucose-regulated protein of Mr 78 kDa) is an integral component of ER stress and the UPR. We first discovered that the up-regulation of GRP78 is associated with augmented sensitivity/apoptosis of cancer cells to clinically used alkylating/platinating agents. To decipher molecular mechanisms that associate induction of the UPR/GRP78 with augmented sensitivity/apoptosis to cisplatin. A549 cells were exposed to 2-deoxyglucose (2dG) to induce the UPR/GRP78, followed by cisplatin treatment. We used human cDNA microarray containing 42,000 ESTs as well as pathway-specific macroarrays for apoptosis, cell cycle, and MAP kinase signaling pathways containing 100-280 genes and subsequently examined the pertinent transcript levels. The results obtained from these studies were confirmed by examining relevant protein levels and the enzymatic activity. We demonstrate that the induction of UPR/GRP78 alone causes a decrease in the transcript levels of DNA repair genes and DNA damage check point genes, and an increase in the transcript levels of apoptotic genes. Furthermore, we show that cisplatin treatment after the induction of UPR/GRP78 is facilitating the mitochondria-mediated apoptotic cascades through the initial activation of caspase-2 and down-regulation of genes involved in DNA repair. Our study will shed new insight as to the increased understanding of the mechanisms of the UPR/GRP78 modulation of molecular and cellular responses to cisplatin that will allow strategies for transferring bench side results to the bed

    Loss of cryptochrome reduces cancer risk in p53 mutant mice

    Get PDF
    It is commonly thought that disruption of the circadian clock increases the cancer incidence in humans and mice. However, it was found that disruption of the clock by the Cryptochrome ( Cry ) mutation in mice did not increase cancer rate in the mutant mice even after exposing the animals to ionizing radiation. Therefore, in this study we tested the effect of the Cry mutation on carcinogenesis in a mouse strain prone to cancer because of a p53 mutation, with the expectation that clock disruption in this sensitized background would further increase cancer risk. Paradoxically, we find that the Cry mutation protects p53 mutant mice from the early onset of cancer and extends their median lifespan ≈50%, in part by sensitizing p53 mutant cells to apoptosis in response to genotoxic stress. These results suggest alternative therapeutic approaches in management of cancers associated with a p53 mutation

    DNA Damage―Specific Control of Cell Death by Cryptochrome in p53-Mutant Ras―Transformed Cells

    Get PDF
    The main feedback loop driving circadian rhythm in mice is controlled in part by the genes encoding the cryptochromes Cry1 and Cry2. Targeted mutation of both Cry1 and Cry2 delay the early onset of tumor formation in p53 null mutant mice. Furthermore, Ras-transformed p53 and Cry null mouse skin fibroblasts are more sensitive than p53 mutants to apoptotic cell death initiated by agents that activate either the intrinsic or extrinsic apoptosis pathways. Here we investigated the effect of Cry1 and Cry2 mutations on cell death by other genotoxic agents that generate alkylated bases, interstrand crosslinks, DNA-protein crosslinks and double-strand breaks. Both UV and the UV mimetic compound oxaliplatin and the radiomimetic compound doxorubicin promoted apoptosis by upregulating the tumor suppressor p73. However, only the UV and oxaliplatin-induced upregulation of p73 mediated by the transcription factor Egr1, but not the doxorubicin-induced upregulation mediated by the transcription factor E2F1, was enhanced by Cry1/Cry2 double mutation. Accordingly, Egr1 downregulation reduced oxaliplatin-induced apoptosis whereas E2F1 downregulation reduced doxorubicin-induced apoptosis. Our findings establish distinct roles for cryptochromes in intrinsic apoptosis induced by UV-mimetic and radiomimetic agents
    corecore