20 research outputs found

    MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours.

    Get PDF
    Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour

    A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children's Oncology Group study.

    No full text
    This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive

    MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours.

    Get PDF
    Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour

    Clinically Relevant Subsets Identified by Gene Expression Patterns Support a Revised Ontogenic Model of Wilms Tumor: A Children's Oncology Group Study

    No full text
    Wilms tumors (WT) have provided broad insights into the interface between development and tumorigenesis. Further understanding is confounded by their genetic, histologic, and clinical heterogeneity, the basis of which remains largely unknown. We evaluated 224 WT for global gene expression patterns; WT1, CTNNB1, and WTX mutation; and 11p15 copy number and methylation patterns. Five subsets were identified showing distinct differences in their pathologic and clinical features: these findings were validated in 100 additional WT. The gene expression pattern of each subset was compared with published gene expression profiles during normal renal development. A novel subset of epithelial WT in infants lacked WT1, CTNNB1, and WTX mutations and nephrogenic rests and displayed a gene expression pattern of the postinduction nephron, and none recurred. Three subsets were characterized by a low expression of WT1 and intralobar nephrogenic rests. These differed in their frequency of WT1 and CTNNB1 mutations, in their age, in their relapse rate, and in their expression similarities with the intermediate mesoderm versus the metanephric mesenchyme. The largest subset was characterized by biallelic methylation of the imprint control region 1, a gene expression profile of the metanephric mesenchyme, and both interlunar and perilobar nephrogenic rests. These data provide a biologic explanation for the clinical and pathologic heterogeneity seen within WT and enable the future development of subset-specific therapeutic strategies. Further, these data support a revision of the current model of WT ontogeny, which allows for an interplay between the type of initiating event and the developmental stage in which it occurs
    corecore