34 research outputs found

    Developing Post Rainy Sorghum Seed System in India

    Get PDF
    The crops grown under rainfed agriculture are described as farming practices that rely on rainfall for crop production and their seed systems describe, how farmers in these regions are sourcing seed for cultivating these crops. The objective of this chapter is to share information, experiences and some success stories of seed value chain models developed for production and supply of improved varieties to resource poor farmers to enhance production of rainfed crops. Majority of crop varieties grown under rainfed agriculture system are open pollinated varieties or self-pollinated crops especially food crops, cereals and legumes grown in semi-arid tropics of the globe. The importance of rainfed agriculture varies regionally but produces most food for poor communities in developing countries. In sub-Saharan Africa more than 95 per cent of the farmed land is rainfed, while the corresponding figure for Latin America is almost 90 per cent, for South Asia about 60 per cent, for East Asia 65 per cent and for the Near East and North Africa 75 per cent..

    Delivering bioavailable micronutrients through biofortifying sorghum and seed chain innovations

    Get PDF
    Micronutrient malnutrition, particularly among women and children, is one of greatest global challenges of our times and the national Governments and international organizations are following various approaches to combat it. Biofortification –increasing the micronutrient density in edible plant parts by genetic means, is one of the cost-effective and sustainable methods to address the micronutrient malnutrition. Sorghum is one of the major staples globally and it meets more than 50% micronutrient requirements of low-income group populations in predominantly sorghum eating areas. We developed biofortified sorghums with elevated levels of grain Fe and Zn combined with higher grain yield possessing farmer-preferred grain and stover traits. The first biofortified sorghum cultivar ‘Parbhani Shakti’ was released in India in 2018, which, besides high Fe and Zn, has higher protein content and lower phytates content. An innovative ‘Seed Consortium’ was built to take this variety to the farmers in shortest possible time to benefit the farmers and consumers. Multi-stakeholder partnership was the key in this endeavour and Indian NARS, farmers, public sector seed organisations, media and Government played a key role along with ICRISAT

    Identification of sorghum genotypes with resistance to the sugarcane aphid Melanaphis sacchari under natural and artificial infestation

    Get PDF
    Sugarcane aphid, Melanaphis sacchari is an endemic pest of sorghum during postrainy season, and there is a need to develop cultivars with resistance to this pest. Evaluation of a diverse array of sorghum genotypes under natural and artificial infestation resulted in identification of seven lines (ICSB 215, ICSB 323, ICSB 724, ICSR 165, ICSV 12001, ICSV 12004 and IS 40615) with moderate levels of resistance to aphid damage. Under artificial infestation, 10 lines suffered 30 q/ha). In another experiment, ICSB 215, ICSB 695, ICSR 161, Line 61510, ICSV 12004, Parbhani Moti and IS 40618 exhibited high grain yield potential (>25 q/ha) and exhibited <50% variation in grain yield as compared to more than 80% in the susceptible check, in CK 60 B. The genotypes RSV 1211, RS 29, RSV 1338, EC 8-2, PU 10-1, IS 40617 and ICSB 695 though showed a susceptible reaction to aphid damage, but suffered relatively low loss in grain yield, suggesting that these lines have tolerance to aphid damage. Principal coordinate analysis suggested that the genotypes with aphid resistance are quite diverse and can be used to breed for aphid resistance and high grain yield potential and also in breeding for aphid resistance in sorghum with adaptation to the postrainy season

    Stability of resistance to sorghum shoot fly, Atherigona soccata

    Get PDF
    Sorghum shoot fly, Atherigona soccata is one of the most important pests of dual-purpose sorghums during the postrainy season in India. Therefore, it is important to identify stable sources of resistance to develop cultivars with shoot fly resistance and adaptation to postrainy season. We evaluated 190 lines adapted to the postrainy season across five locations, of which 30 lines were identified with resistance to A. soccata. These lines were further evaluated for three seasons across five locations to identify lines with stable resistance to this pest across seasons and locations. Data were recorded on oviposition non-preference, deadheart incidence, recovery resistance, morphological traits (leaf glossiness, seedling vigor, plant height and days to 50% flowering), and grain yield. The sorghum genotypes CSV 22, ICSB 422, ICSB 425, ICSB 428, ICSB 432, ICSB 458, ICSB 463, IS 2312, IS 5480, IS 18662, Phule Chitra, RSV 1093, IS 18551, and RSV 1235 exhibited resistance to shoot fly damage across seasons, of which ICSB 425, ICSB 428, ICSB 432, IS 2312, IS 5480, and IS 18551 showed non-preference for oviposition. Six genotypes (ICSB 425, IS 2312, IS 18662, RSV 1090, RSV 1093, and IS 18551) also showed good recovery resistance following shoot fly damage. Principal coordinate analysis placed the maintainer lines (B-lines) with shoot fly resistance in two clusters with ICSB 422, ICSB 432, ICSB 435, ICSB 456 and ICSB 458 in one cluster and ICSB 425, ICSB 428 and ICSB 463 in the other; the open pollinated varieties/germplasm lines (restorers) were placed in a different group (CSV 22, IS 5480, IS 2312 and RSV 1093), suggesting the possibilities for developing hybrids with adaptation to the postrainy season. Based on regression coefficient and deadheart incidence, the genotypes IS 2312, ICSB 425, RSV 1090 and ICSB 428 were stable in expression of resistance to shoot fly across seasons and locations. The genotypes CSV 22 and RSV 1093 exhibited high grain yield potential and resistance to shoot fly damage, while Phule Yashoda, IS 2312, RSV 1235, and ICSV 574 were moderately resistant to shoot fly damage, but had high grain yield potential. These genotypes can be used in sorghum improvement for developing cultivars with shoot fly resistance, high grain yield and adaptation to postrainy season

    Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology

    Get PDF
    In this research, an attempt has been made to develop mathematical models for predicting mechanical properties including ultimate tensile strength, impact toughness, and hardness of the friction stir-welded AA6061-T6 joints at 95 % confidence level. Response surface methodology with central composite design having four parameters and five levels has been used. The four parameters considered were tool pin profile, rotational speed, welding speed, and tool tilt angle. Three confirmation tests were performed to validate the empirical relations. In addition, the influence of the process parameters on ultimate tensile strength, impact toughness, and hardness were investigated. The results indicated that tool pin profile is the most significant parameter in terms of mechanical properties; tool with simple cylindrical pin profile produced weld with high ultimate tensile strength, impact toughness, and hardness. In addition to tool pin profile, rotational speed was more significant compared to welding speed for ultimate tensile strength and impact toughness, whereas welding speed showed dominancy over rotational speed in case of hardness. Optimum conditions of process parameters have been found at which tensile strength of 92 %, impact toughness of 87 %, and hardness of 95 % was achieved in comparison to the base metal. This research will contribute to expand the scientific foundation of friction stir welding of aluminum alloys with emphasis on AA6061-T6. The results will aid the practitioners to develop a clear understanding of the influence of process parameters on mechanical properties and will allow the selection of best combinations of parameters to achieve desired mechanical properties

    Not Available

    No full text
    Not AvailableSorghum [Sorghum bicolor (L.) Moench] grown in India is of two adaptive types: rainy and post-rainy. The postrainy sorghum is predominantly consumed by humans. While releasing new cultivars through multi-location testing, major emphasis is given to the superiority of new cultivars over existing cultivars, with very little emphasis on the genotype × environment interaction (GEI). To understand the complexity of GEI in post-rainy sorghum testing location trials, the multi-location evaluation data of two post-rainy seasons (2009/10 and 2010/11) under the All India Coordinated Sorghum Improvement Project were analysed. In both years, location explained the highest proportion of total sum of squares followed by the GEI effect and main effect of genotype. Additive main effects and multiplicative interaction (AMMI), stability values (ASV) and genotype + genotype × environment interaction (GGE) instability values recorded high correlation resulting in identification of the best performing cultivars. However, the rank correlations were lower, though still significant. A mixture of crossover and non-crossover GEI was a common occurrence in both years. ‘Which-won-where’ analysis suggested the existence of four possible mega-environments (ME) among post-rainy testing locations, with a few non-informative locations within ME. Mega-environments are characterized by soil type, rainfall pattern and moisture conservation practices. The present study indicated the possibility of reducing the number of test locations by eliminating non-representative highly correlated locations and suggested the need to breed for location-specific genotypes rather than genotypes with wider adaptability.Not Availabl

    Not Available

    No full text
    Not AvailableSorghum [Sorghum bicolor (L.) Moench] grown in India is of two adaptive types: rainy and post-rainy. The postrainy sorghum is predominantly consumed by humans. While releasing new cultivars through multi-location testing, major emphasis is given to the superiority of new cultivars over existing cultivars, with very little emphasis on the genotype x environment interaction (GEI). To understand the complexity of GEI in post-rainy sorghum testing location trials, the multi-location evaluation data of two post-rainy seasons (2009/10 and 2010/11) under the All India Coordinated Sorghum Improvement Project were analysed. In both years, location explained the highest proportion of total sum of squares followed by the GEI effect and main effect of genotype. Additive main effects and multiplicative interaction (AMMI), stability values (ASV) and genotype + genotype x environment interaction (GGE) instability values recorded high correlation resulting in identification of the best performing cultivars. However, the rank correlations were lower, though still significant. A mixture of crossover and non-crossover GEI was a common occurrence in both years. 'Which-won-where' analysis suggested the existence of four possible mega-environments (ME) among post-rainy testing locations, with a few non-informative locations within ME. Mega-environments are characterized by soil type, rainfall pattern and moisture conservation practices. The present study indicated the possibility of reducing the number of test locations by eliminating non-representative highly correlated locations and suggested the need to breed for location-specific genotypes rather than genotypes with wider adaptability.Not Availabl
    corecore