6 research outputs found

    A High Red Blood Cell Distribution Width Predicts Failure of Arteriovenous Fistula

    Get PDF
    In hemodialysis patients, a native arteriovenous fistula (AVF) is the preferred form of permanent vascular access. Despite recent improvements, vascular access dysfunction remains an important cause of morbidity in these patients. In this prospective observational cohort study, we evaluated potential risk factors for native AVF dysfunction. We included 68 patients with chronic renal disease stage 5 eligible for AVF construction at the Department of General and Vascular Surgery, Central Clinical Hospital Ministry of Internal Affairs, Warsaw, Poland. Patient characteristics and biochemical parameters associated with increased risk for AVF failure were identified using Cox proportional hazards models. Vessel biopsies were analyzed for inflammatory cells and potential associations with biochemical parameters. In multivariable analysis, independent predictors of AVF dysfunction were the number of white blood cells (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.24 to 2.25; p<0.001), monocyte number (HR 0.02; 95% CI 0.00 to 0.21; p = 0.001), and red blood cell distribution width (RDW) (HR 1.44; 95% CI 1.17 to 1.78; p<0.001). RDW was the only significant factor in receiver operating characteristic curve analysis (area under the curve 0.644; CI 0.51 to 0.76; p = 0.046). RDW>16.2% was associated with a significantly reduced AVF patency frequency 24 months after surgery. Immunohistochemical analysis revealed CD45-positive cells in the artery/vein of 39% of patients and CD68-positive cells in 37%. Patients with CD68-positive cells in the vessels had significantly higher white blood cell count. We conclude that RDW, a readily available laboratory value, is a novel prognostic marker for AVF failure. Further studies are warranted to establish the mechanistic link between high RDW and AVF failure

    Simvastatin reduces sympathetic activity in men with hypertension and hypercholesterolemia

    No full text
    Beyond their hypolipidemic effect, statins reduce cardiovascular risk in hypertensive subjects via various mechanisms; one suggested mechanism is that they reduce sympathetic activity. We investigated the hypothesis that simvastatin decreased muscle sympathetic nerve activity (MSNA) in 31 hypertensive subjects with hypercholesterolemia (aged 38.7±10 years). In this randomized, placebo-controlled, double-blinded study, patients were treated with simvastatin (40 mg day-1; n=15) or placebo (n=16) for 8 weeks. Before and after treatment, we measured MSNA, blood pressure and heart rate. Baroreceptor control of the heart rate, or baroreceptor sensitivity (BRS), was computed by the sequence method, a cross-analysis of systolic blood pressure and the electrocardiogram R-R interval. Blood samples were tested for plasma levels of catecholamines, neuropeptide Y, aldosterone, endothelin and renin activity. Simvastatin significantly reduced MSNA (from 36.55 to 27.86 bursts per min, P=0.001), heart rate (from 77±6.7 to 71±6.1 beats per min, P=0.01) and both total and low-density lipoprotein cholesterol (from 249±30.6 to 184±28.3 mg dl -1, P=0.001 and from 169±30.6 to 117±31.2 mg dl-1, P=0.01, respectively). Simvastatin also improved BRS (from 10.3±4.1 to 17.1±4.3 ms per mm Hg, P=0.04). No changes were observed in systolic or diastolic blood pressures, or in plasma levels of catecholamines, neuropeptide Y, endothelin, aldosterone and renin activity. After simvastatin therapy, MSNA and BRS were inversely related (r=-0.94, P<0.05). In conclusion, we found that, in patients with hypertension and hypercholesterolemia, simvastatin reduced MSNA, and this was related to increased baroreceptor sensitivity. © 2010 The Japanese Society of Hypertension All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio:a pooled analysis of 458 population-based studies in Asian and Western countries

    No full text
    Abstract Background: Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease, multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and non-HDL cholesterol and the total-to-HDL cholesterol ratio in Asian and Western countries. Methods: We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol and mean total-to-HDL cholesterol ratio by country, sex and age group. Results: Since ∼1980, mean TC increased in Asian countries. In Japan and South Korea, the TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, at ∼0.4 mmol/L per decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as ∼0.7 per decade in Swiss men (equivalent to ∼26% decline in coronary heart disease risk per decade). The ratio increased in China. Conclusions: HDL cholesterol has risen and the total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only a weak correlation with changes in TC or non-HDL cholesterol

    Worldwide trends in blood pressure from 1975 to 2015:a pooled analysis of 1479 population-based measurement studies with 19.1 million participants

    No full text
    Abstract Background: Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher. Methods: For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure. Findings: We pooled 1479 studies that had measured the blood pressures of 19.1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127.0 mm Hg (95% credible interval 125.7–128.3) in men and 122.3 mm Hg (121.0–123.6) in women; age-standardised mean diastolic blood pressure was 78.7 mm Hg (77.9–79.5) for men and 76.7 mm Hg (75.9–77.6) for women. Global age-standardised prevalence of raised blood pressure was 24.1% (21.4–27.1) in men and 20.1% (17.8–22.5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1.13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence. Interpretation: During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe
    corecore