1,545 research outputs found

    Dark matter and spin-1 milli-charged particles

    Get PDF
    New physics scenarios beyond the Standard Model predict the existence of milli-charged particles. So far, only spin-1/2 and spin-0 milli-charged particles have been considered in literature, leaving out the interesting case of spin-1. We propose a minimal unitary and renormalizable model of massive milli-charged vector particles. Unitarity requires that these particles are gauge bosons of a non-abelian spontaneously broken gauge symmetry. The minimal scenario then consists of an extended Standard Model gauge group SU(2)LĂ—U(1)YĂ—SU(2)DSU(2)_L \times U(1)_Y \times SU(2)_D together with a SU(2)DSU(2)_D dark Higgs boson responsible for the symmetry breaking in the dark sector. By imposing that the dark Higgs multiplet has a non-vanishing milli-hypercharge, stable milli-charged spin-1 fields arise thereby providing a potential dark matter candidate. We analyse the phenomenological constraints on this scenario and discuss their implications.Comment: Matches the version that is to appear on JHE

    Polarization observables for millicharged particles in photon collisions

    Full text link
    Particles in a hidden sector can potentially acquire a small electric charge through their interaction with the Standard Model and can consequently be observed as millicharged particles. We systematically compute the production of millicharged scalar, fermion and vector boson particles in collisions of polarized photons. The presented calculation is model independent and is based purely on the assumptions of electromagnetic gauge invariance and unitarity. Polarization observables are evaluated and analyzed for each spin case. We show that the photon polarization asymmetries are a useful tool for discriminating between the spins of the produced millicharged particles. Phenomenological implications for searches of millicharged particles in dedicated photon-photon collision experiments are also discussed.Comment: 11 pages, 7 figures, Appendix added, same as published versio

    One loop Standard Model corrections to flavor diagonal fermion-graviton vertices

    Full text link
    We extend a previous analysis of flavor-changing fermion-graviton vertices, by adding the one-loop SM corrections to the flavor diagonal fermion-graviton interactions. Explicit analytical expressions taking into account fermion masses for the on-shell form factors are computed and presented. The infrared safety of the fermion-graviton vertices against radiative corrections of soft photons and gluons is proved, by extending the ordinary infrared cancellation mechanism between real and virtual emissions to the gravity case. These results can be easily generalized to fermion couplings with massive gravitons, graviscalar, and dilaton fields, with potential phenomenological implications to new physics scenarios with low gravity scale.Comment: 30 pages, 11 figures, revised final version, to appear on Phys. Rev.

    An analytical framework to nowcast well-being using mobile phone data

    Full text link
    An intriguing open question is whether measurements made on Big Data recording human activities can yield us high-fidelity proxies of socio-economic development and well-being. Can we monitor and predict the socio-economic development of a territory just by observing the behavior of its inhabitants through the lens of Big Data? In this paper, we design a data-driven analytical framework that uses mobility measures and social measures extracted from mobile phone data to estimate indicators for socio-economic development and well-being. We discover that the diversity of mobility, defined in terms of entropy of the individual users' trajectories, exhibits (i) significant correlation with two different socio-economic indicators and (ii) the highest importance in predictive models built to predict the socio-economic indicators. Our analytical framework opens an interesting perspective to study human behavior through the lens of Big Data by means of new statistical indicators that quantify and possibly "nowcast" the well-being and the socio-economic development of a territory

    Anomalous Higgs-boson coupling effects in HWW production at the LHC

    Full text link
    We study the LHC associated production of a Higgs boson and a W^+W^- vector-boson pair at 14 TeV, in the Standard Model and beyond. We consider different signatures corresponding to the cleanest H and W decay channels, and discuss the potential of the high-luminosity phase of the LHC. In particular, we investigate the sensitivity of the HWW production to possible anomalous Higgs couplings to vector bosons and fermions. Since the b-quark initiated partonic channel contributes significantly to this process, we find a moderate sensitivity to both the size and sign of an anomalous top-quark Yukawa coupling, because perturbative unitarity in the standard model implies a destructive interference in the b b-bar subprocess. We show that a combination of various signatures can reach a ~9 standard-deviation sensitivity in the presently allowed negative region of the top-Higgs coupling, if not previously excluded.Comment: 13 pages, 3 figure

    Nanoparticle-based receptors mimic protein-ligand recognition

    Get PDF
    The self-assembly of a monolayer of ligands on the surface of noble metal nanoparticles dictates the fundamental nanoparticle\u2019s behavior and its functionality. In this combined computational\u2013experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which may explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs

    Mass Corrections to Flavor-Changing Fermion-Graviton Vertices in the Standard Model

    Full text link
    In a previous study, the flavor-changing fermion-graviton interactions have been analyzed in the framework of the standard model, where analytical results for the relevant form factors were obtained at the leading order in the external fermion masses. These interactions arise at one-loop level by the charged electroweak corrections to the fermion-graviton vertex, when the off-diagonal flavor transitions in the corresponding charged weak currents are taken into account. Due to the conservation of the energy-momentum tensor, the corresponding form factors turn out to be finite and gauge invariant when external fermions are on-shell. Here we extend this previous analysis by including the exact dependence on the external fermion masses. Complete analytical results are provided for all the relevant form factors to the flavor-changing fermion-graviton transitions.Comment: 19 pages, 9 figure

    Mesh Fixation Methods in Groin Hernia Surgery

    Get PDF
    No unanimous consent has been reached by surgeons in terms of a method for mesh fixation in laparoscopic and open surgery for inguinal hernia repair. Many different methods of fixation are available, and the choice of which one to use is still based on surgeons’ preferences. At present, tissue glues, sutures, and laparoscopic tacks are the most common fixating methods. In open technique, sutures have been the method of choice for their reduced costs and surgeons’ habits. Nevertheless, tissue glues have been demonstrated to be effective and safe. Similarly, tacks can be considered the most common means of fixation in laparoscopic hernia repair, but they are connected to a higher risk of complication and morbidity. In this chapter, we present these types of mesh fixation, their characteristics and potential risks, and advantages of their use
    • …
    corecore