23 research outputs found

    Role of the Hippo pathway in liver regeneration and repair: recent advances

    Get PDF
    Although the signaling pathways involved in normal liver regeneration have been well characterized, less has been done for livers affected by chronic tissue damage. These "abnormal livers" have an impaired regenerative response that leads to liver repair and fibrosis. The tumor suppressor Hippo pathway plays a key role in liver regeneration and repair. On this basis, this review discusses recent studies focusing on the involvement of the Hippo signaling pathway during "normal healthy liver regeneration" (i.e., in a normal liver after 2/3 partial hepatectomy) and "abnormal liver regeneration" (i.e., in a liver damaged by chronic disease). This could be an important question to address with respect to new therapies aimed at improving impaired liver regenerative responses. The studies reported here have shown that activation of the Hippo coactivators YAP/TAZ during normal liver regeneration promotes the formation of a new bile duct network through direct BEC proliferation or/and hepatocyte dedifferentiation to HPCs which can trans-differentiate to BECs. Moreover, YAP/TAZ signaling interaction with other signaling pathways mediates the recruitment and activation of Kupffer cells, which release mitogenic cytokines for parenchymal and/or non-parenchymal cells and engage in phagocytosis of cellular debris. In addition, YAP-mediated activation of stellate cells (HSCs) promotes liver regeneration through the synthesis of extracellular matrix. However, in chronically diseased livers, where the predetermined threshold for proper liver regeneration is exceeded, YAP/TAZ activation results in a reparative process characterized by liver fibrosis. In this condition, YAP/TAZ activation in parenchymal and non-parenchymal cells results in (i) differentiation of quiescent HSCs into myofibroblastic HSCs; (ii) recruitment of macrophages releasing inflammatory cytokines; (iii) polarization of macrophages toward the M2 phenotype. Since accumulation of damaged hepatocytes in chronic liver injury represent a significant risk factor for the development of hepatocarcinoma, this review also discussed the involvement of the Hippo pathway in the clearance of damaged cells

    α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cells

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common liver cancer and a major cause of adult death. The current treatments for HCC suffer from drug resistance and poor prognosis; therefore, novel therapeutic agents are urgently needed. Phytochemicals have been proposed to treat a range of cancers. Among them, α-lipoic acid (α-LA), a naturally synthesized antioxidant found in various dietary animal and plant sources, prevents oxidant-mediated cell death in normal cells while inducing apoptosis in several cancer cell lines. Previously, we demonstrated that the treatment of hepatoma cells with α-LA induced apoptosis, which was preceded by the generation of reactive oxygen species (ROS) and activation of the p53 protein, a known inducer of mitochondria-mediated apoptosis. Several studies have shown that ROS-induced apoptosis is associated with endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) activation. Herein, we investigated if α-LA-induced apoptosis in hepatoma cell lines was ER stress- and UPR-mediated by gene expression profiling analyses. UPR and ER stress pathways were the most up-regulated after treatment with α-LA. This finding, which has been confirmed by expression analyses of ER- and UPR-associated proteins, provides a better understanding of the molecular mechanisms behind the anti-tumoral action of α-LA on hepatoma cells

    Glutamine Starvation Affects Cell Cycle, Oxidative Homeostasis and Metabolism in Colorectal Cancer Cells

    Get PDF
    Cancer cells adjust their metabolism to meet energy demands. In particular, glutamine addiction represents a distinctive feature of several types of tumors, including colorectal cancer. In this study, four colorectal cancer cell lines (Caco-2, HCT116, HT29 and SW480) were cultured with or without glutamine. The growth and proliferation rate, colony-forming capacity, apoptosis, cell cycle, redox homeostasis and metabolomic analysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, high-performance liquid chromatography and gas chromatography/mass spectrometry techniques. The results show that glutamine represents an important metabolite for cell growth and that its deprivation reduces the proliferation of colorectal cancer cells. Glutamine depletion induces cell death and cell cycle arrest in the GO/G1 phase by modulating energy metabolism, the amino acid content and antioxidant defenses. Moreover, the combined glutamine starvation with the glycolysis inhibitor 2-deoxy-D-glucose exerted a stronger cytotoxic effect. This study offers a strong rationale for targeting glutamine metabolism alone or in combination with glucose metabolism to achieve a therapeutic benefit in the treatment of colon cancer

    Comparison of tetraacetylethylendiamine + sodium perborate and sodium hypochlorite cytotoxicity on L929 fibroblasts

    No full text
    Introduction: Tetraacetylethylenediamine in association with sodium perborate (TAED+P) can be suggested for its use as an endodontic disinfectant because of its antimicrobial activity against different bacterial species when used at low concentrations. The purpose of this study was to measure the cytotoxicity of TAED+P on L929 fibroblasts and to compare it with that of sodium hypochlorite (NaOCl). Methods: L929 fibroblasts were grown in Dulbecco Modified Eagle Medium containing 10% fetal calf serum (FCS) at 37°C and 5% CO 2. At confluence, cells were split, plated in a 96-well plate, and incubated for 24 hours to allow attachment. The two disinfectants TAED+P and NaOCI were tested at various concentrations. The neutral red uptake and the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assays were used to evaluate the cell viability. The 50% inhibitory dose values for both disinfectants were calculated and statistically analyzed. The effect of both disinfectants on fibroblast viability was also determined in the presence of various concentrations of FCS. One-way analysis of variance with post hoc analysis using Tukey multiple comparison test was used for parametric data. Results: Both disinfectants induced a dose-related loss of cell viability; TAED+P resulted less cytotoxic than NaOCI in all the examined experimental conditions. Conclusions: These data support the possible use of TAED+P as an endodontic irrigant. Further studies are required to analyze its antibacterial activity against endodontic pathogens

    Solvent-Free addition of indole to aldehydes: Unexpected synthesis of novel 1-[1-(1h-indol-3-yl) alkyl]-1h-indoles and preliminary evaluation of their cytotoxicity in hepatocarcinoma cells

    No full text
    New 1-[1-(1H-indol-3-yl) alkyl]-1H-indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic and heteroaromatic aldehydes afforded only classical bis (indolyl) aryl indoles. In this paper, the role of CaO, together with the regiochemistry and the mechanism of the reaction, are discussed in detail. The effect of some selected 3,3'- and 1,3'-diindolyl methane derivatives on cell proliferation of the hepatoma cell line FaO was also evaluated

    Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats

    No full text
    FASEB J. 2008 Aug;22(8):2981-9. Epub 2008 Apr 23. Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. Perra A, Simbula G, Simbula M, Pibiri M, Kowalik MA, Sulas P, Cocco MT, Ledda-Columbano GM, Columbano A. SourceDepartment of Toxicology, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari, Italy. Abstract Nonalcoholic fatty liver disease is the most common noninfectious liver disease in clinical practice, and there is an increasing need for new therapeutic approaches for the treatment of this liver disease. Here, we examined the effect of the thyroid hormone triiodothyronine (T3) and the agonist of the thyroid hormone receptor beta isoform (TRbeta), GC-1, on fatty liver and steatohepatitis induced in rodents by a choline-methionine deficient (CMD) diet. Male Fischer 344 rats fed a CMD diet for 1 wk developed a marked fatty liver and mild hepatitis. Concurrent administration of T3 resulted in a complete prevention of the fatty change associated with increased fatty acid mitochondrial and peroxisomal beta-oxidation. To investigate whether T3 could also reverse fully established fatty liver, rats were fed a CMD diet for 10 wk and then cofed T3 for 1 wk. Coadministration of T3 resulted in a complete regression of liver steatosis associated with a decrease of lipid peroxidation, cyclooxygenase-2 expression, and activation of phospho-STAT3 and phospho-SAPK/JNK. Finally, additional experiments showed that GC-1, which has no significant side effects on heart rate, prevented and reverted CMD-induced fat accumulation, and ameliorated steatohepatitis. These results indicate that TR agonists have the potential to inhibit or reverse hepatic steatosis induced by a nutritional model. PMID:18434432[PubMed - indexed for MEDLINE

    Alpha-lipoic acid promotes the growth of rat hepatic preneoplastic lesions in the choline deficient model

    No full text
    alpha-lipoic acid (alpha-LA) is an antioxidant used in a number of conditions related to liver diseases. Herein, we investigated the effect of alpha-LA on the development of rat pre-neoplastic lesions generated by a model of hepatocarcinogenesis, which has similarities in its histopathological sequence to human hepatocellular carcinoma development with cirrhosis. Initiation of hepatocytes was achieved by treatment with a single dose of diethylnitrosamine and promotion by feeding a choline-methionine-deficient diet (CMD), with or without alpha-LA. Pre-neoplastic lesions were identified by their positivity to the placental form of glutathione S-transferase (GSTP) or to gamma glutamyl transpeptidase. alpha-LA given to rats fed a CMD for 6 weeks dramatically increased the number of GSTP-positive foci as compared with rats fed a CMD alone (96/cm(2) versus 7/cm(2)), the mean foci area (0.033 versus 0.008 mm(2)) and the percentage of GSTP-positive liver tissue (3.01 versus 0.07%). Essentially similar results were obtained after 10 weeks of treatment. Co-treatment with CMD + alpha-LA also resulted in the enhancement of fat accumulation, lipid peroxidation and hepatocyte death; increased expression of tumor necrosis factor-alpha, cytochrome 2E1 and cyclooxygenase-2, enhanced activation of c-jun N-terminal kinase and signal transducer activator of transcription 3, and chronic hepatocyte proliferation was also observed. No such effects were observed when alpha-LA was added to a choline-supplemented diet. In conclusion, administration of alpha-LA in conditions associated with hepatic damage aggravates liver injury and stimulates the development of pre-neoplastic lesions; the results also suggest caution in its use in the presence of chronic liver injur
    corecore