33 research outputs found

    Ranking Theory

    Get PDF
    Ranking theory is one of the salient formal representations of doxastic states. It differs from others in being able to represent belief in a proposition (= taking it to be true), to also represent degrees of belief (i.e. beliefs as more or less firm), and thus to generally account for the dynamics of these beliefs. It does so on the basis of fundamental and compelling rationality postulates and is hence one way of explicating the rational structure of doxastic states. Thereby it provides foundations for accounts of defeasible or nonmonotonic reasoning. It has widespread applications in philosophy, it proves to be most useful in Artificial Intelligence, and it has started to find applications as a model of reasoning in psychology

    Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori

    Get PDF
    Transcriptional regulatory networks (TRNs) transduce environmental signals into coordinated output expression of the genome. Accordingly, they are central for the adaptation of bacteria to their living environments and in host–pathogen interactions. Few attempts have been made to describe a TRN for a human pathogen, because even in model organisms, such as Escherichia coli, the analysis is hindered by the large number of transcription factors involved. In light of the paucity of regulators, the gastric human pathogen Helicobacter pylori represents a very appealing system for understanding how bacterial TRNs are wired up to support infection in the host. Herein, we review and analyze the available molecular and “-omic” data in a coherent ensemble, including protein–DNA and protein–protein interactions relevant for transcriptional control of pathogenic responses. The analysis covers ∼80% of the annotated H. pylori regulators, and provides to our knowledge the first in-depth description of a TRN for an important pathogen. The emerging picture indicates a shallow TRN, made of four main modules (origons) that process the physiological responses needed to colonize the gastric niche. Specific network motifs confer distinct transcriptional response dynamics to the TRN, while long regulatory cascades are absent. Rather than having a plethora of specialized regulators, the TRN of H. pylori appears to transduce separate environmental inputs by using different combinations of a small set of regulators

    Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line

    No full text
    We evaluated the signalling framework of immortalized cells from the hypothalamic suprachiasmatic nucleus (SCN) of the mouse. We selected a vasoactive intestinal peptide (VIP)-positive sub-clone of immortalized mouse SCN-cells stably expressing a cAMP-regulated-element (CRE)-luciferase construct named SCNCRE. We characterized these cells in terms of their status as neuronal cells, as well as for important components of the cAMP-dependent signal transduction pathway and compared them to SCN ex vivo. SCNCRE cells were treated with agents that modulate different intracellular signalling pathways to investigate their potency and timing for transcriptional CRE-dependent signalling. Several activating pathways modulate SCN neuronal signalling via the cAMP-regulated-element (CRE: TGACGCTA) and phosphorylation of transcription factors such as cAMP-regulated-element-binding protein (CREB). CRE-luciferase activity induced by different cAMP-signalling pathway-modulating agents displayed a variety of substance-specific dose and time-dependent profiles and interactions relevant to the regulation of SCN physiology. Moreover, the induction of the protein kinase C (PKC) pathway by phorbol ester application modulates the CRE-dependent signalling pathway as well. In conclusion, the cAMP/PKA- and the PKC-regulated pathways individually and in combination modulate the final CRE-dependent transcriptional output

    More human BM-MSC with similar subpopulation composition and functional characteristics can be produced with a GMP-compatible fabric filter system compared to density gradient technique

    No full text
    Background: Mesenchymal stromal cells (MSCs), multipotent progenitors that can be isolated from a variety of different tissues, are becoming increasingly important as cell therapeutics targeting immunopathologies and tissue regeneration. Current protocols for MSC isolation from bone marrow (BM) rely on density gradient centrifugation (DGC), and the production of sufficient MSC doses is a critical factor for conducting clinical MSC trials. Previously, a Good Manufacturing Practice (GMP)–compatible non-woven fabric filter device system to isolate MSCs was developed to increase the MSC yield from the BM. The aim of our study was to compare high-resolution phenotypic and functional characteristics of BM-MSCs isolated with this device and with standard DGC technology. Methods: Human BM samples from 5 donors were analyzed. Each sample was divided equally, processing by DGC, and with the filter device. Stem cell content was assessed by quantification of colony-forming units fibroblasts (CFU-F). Immunophenotype was analyzed by multicolor flow cytometry. In vitro trilineage differentiation potential, trophic factors, and IDO-1 production were assessed. Functionally, immunomodulatory potential, wound healing, and angiogenesis were assayed in vitro. Results: The CFU-F yield was 15-fold higher in the MSC preparations isolated with the device compared to those isolated by DGC. Consequently, the MSC yield that could be manufactured at passage 3 per mL collected BM was more than 10 times higher in the device group compared to DGC (1.65 × 109 vs. 1.45 × 108). The immunomodulatory potential and IDO-1 production showed donor-to-donor variabilities without differences between fabric filter-isolated and DGC-isolated MSCs. The results from the wound closure assays, the tube formation assays, and the trilineage differentiation assays were similar between the groups with respect to the isolation method. Sixty-four MSC subpopulations could be quantified with CD140a+CD119+CD146+ as most common phenotype group, and CD140a+CD119+CD146+MSCA-1–CD106–CD271– and CD140a+CD119+CD146–MSCA-1–CD106–CD271– as most frequent MSC subpopulations. As trophic factors hepatocyte growth factor, epidermal growth factor, brain-derived neurotrophic factor, angiopoietin-1, and vascular endothelial growth factor A could be detected in both groups with considerable variability between donors, but independent of the respective MSC isolation technique. Conclusion: The isolation of MSCs using a GMP-compatible fabric filter system device resulted in higher yield of CFU-F, producing substantially more MSCs with similar subpopulation composition and functional characteristics as MSCs isolated by DGC

    VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy

    No full text
    Vitamin K is involved in the -carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin

    Variant rs1801157 in the 3'UTR of SDF-1ß does not explain variability of healthy-donor G-CSF responsiveness

    No full text
    The genetics responsible for the inter-individually variable G-CSF responsiveness remain elusive. A single nucleotide polymorphism (SNP) in the 3’UTR of CXCL12, rs1801157, was implicated in X4-tropic HiV susceptibility and later, in two small studies, in G-CSR responsiveness in patients and donors. The position of the SNP in the 3’UTR together with in-silico predictions suggested differential binding of micro-RNA941 as an underlying mechanism. In a cohort of 515 healthy stem cell donors we attempted to reproduce the correlation of the CXCL12 3’UTR SNP and mobilization responses and tested the role of miR941 in this context. The SNP was distributed with the expected frequency. Mobilization efficiency for CD34+ cells in WT, heterozygous and homozygous SNP individuals was indistinguishable, even after controlling for gender. miR941 expression in non-hematopoietic bone marrow cells was undetectable and miR941 did not interact with the 3’ UTR of CXCL12. Proposed effects of the SNP rs1801157 on G-CSF responsiveness cannot be confirmed in a larger cohort

    Adaptive immunity and pathogenesis of diabetes: insights provided by the α4–integrin deficient NOD mouse

    No full text
    Background: The spontaneously diabetic “non-obese diabetic” (NOD) mouse is a faithful model of human type-1 diabetes (T1D). Methods: Given the pivotal role of α4 integrin (CD49d) in other autoimmune diseases, we generated NOD mice with α4-deficient hematopoiesis (NOD.α4-/-) to study the role of α4 integrin in T1D. Results: NOD.α4-/- mice developed islet-specific T-cells and antibodies, albeit quantitatively less than α4+ counterparts. Nevertheless, NOD.α4-/- mice were completely and life-long protected from diabetes and insulitis. Moreover, transplantation with isogeneic α4-/- bone marrow prevented progression to T1D of pre-diabetic NOD.α4+ mice despite significant pre-existing islet cell injury. Transfer of α4+/CD3+, but not α4+/CD4+ splenocytes from diabetic to NOD.α4-/- mice induced diabetes with short latency. Despite an only modest contribution of adoptively transferred α4+/CD3+ cells to peripheral blood, pancreas-infiltrating T-cells were exclusively graft derived, i.e., α4+. Microbiota of diabetes-resistant NOD.α4-/- and pre-diabetic NOD.α4+ mice were identical. Co- housed diabetic NOD.α4+ mice showed the characteristic diabetic dysbiosis, implying causality of diabetes for dysbiosis. Incidentally, NOD.α4-/- mice were protected from autoimmune sialitis. Conclusion: α4 is a potential target for primary or secondary prevention of T1D

    Molecular signature of human bone marrow-derived mesenchymal stromal cell subsets

    No full text
    In the current study we compared the molecular signature of expanded mesenchymal stromal cells (MSCs) derived from selected CD271+ bone marrow mononuclear cells (CD271-MSCs) and MSCs derived from non-selected bone marrow mononuclear cells by plastic adherence (PA-MSCs). Transcriptome analysis demonstrated for the first time the upregulation of 115 and downregulation of 131 genes in CD271-MSCs. Functional enrichment analysis showed that the upregulated genes in CD271-MSCs are significantly enriched for extracellular matrix (tenascin XB, elastin, ABI family, member 3 (NESH) binding protein, carboxypeptidase Z, laminin alpha 2 and nephroblastoma overexpressed) and cell adhesion (CXCR7, GPNMB, MYBPH, SVEP1, ARHGAP6, TSPEAR, PIK3CG, ABL2 and NCAM1). CD271-MSCs expressed higher gene transcript levels that are involved in early osteogenesis/chondrogenesis/adipogenesis (ZNF145, FKBP5). In addition, increased transcript levels for early and late osteogenesis (DPT, OMD, ID4, CRYAB, SORT1), adipogenesis (CTNNB1, ZEB, LPL, FABP4, PDK4, ACDC), and chondrogenesis (CCN3/NOV, CCN4/WISP1, CCN5/WISP2 and ADAMTS-5) were detected. Interestingly, CD271-MSCs expressed increased levels of hematopoiesis associated genes (CXCL12, FLT3L, IL-3, TPO, KITL). Down-regulated genes in CD271-MSCs were associated with WNT and TGF-beta signaling, and cytokine/chemokine signaling pathways. In addition to their capacity to support hematopoiesis, these results suggest that CD271-MSCs may contain more osteo/chondro progenitors and/or feature a greater differentiation potential

    Human mesenchymal stromal cells are resistant to SARS-CoV-2 infection under steady-state, inflammatory conditions and in the presence of SARS-CoV-2-infected cells

    No full text
    Previous studies reported on the safety and applicability of mesenchymal stem/stromal cells (MSCs) to ameliorate pulmonary inflammation in acute respiratory distress syndrome (ARDS). Thus, multiple clinical trials assessing the potential of MSCs for COVID-19 treatment are underway. Yet, as SARS-inducing coronaviruses infect stem/progenitor cells, it is unclear whether MSCs could be infected by SARS-CoV-2 upon transplantation to COVID-19 patients. We found that MSCs from bone marrow, amniotic fluid, and adipose tissue carry angiotensin-converting enzyme 2 and transmembrane protease serine subtype 2 at low levels on the cell surface under steady-state and inflammatory conditions. We did not observe SARS-CoV-2 infection or replication in MSCs at steady state under inflammatory conditions, or in direct contact with SARS-CoV-2-infected Caco-2 cells. Further, indoleamine 2,3-dioxygenase 1 production in MSCs was not impaired in the presence of SARS-CoV-2. We show that MSCs are resistant to SARS-CoV-2 infection and retain their immunomodulation potential, supporting their potential applicability for COVID-19 treatment
    corecore