25 research outputs found
Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: Time well spent?: Spatial vs. Q-Space Sampling for Tractography
Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results
Population variation in neuroendocrine activity is associated with behavioral inhibition and hemispheric brain structure in young rhesus monkeys
Population variation in hypothalamic-pituitary-adrenal (HPA) activity and reactivity was assessed in a healthy sample of 48 juvenile rhesus monkeys. Cluster analysis of the HPA profiles revealed four distinct neuroendocrine phenotypes based on six indices of HPA functioning. Behavioral reactivity was also evaluated in response to novel stimuli, and revealed marked differences between animals in the highest- and lowest-cortisol clusters. Specifically, animals in the high-cortisol cluster showed larger stress-induced cortisol responses and blunted feedback sensitivity to dexamethasone. They were also emotionally reactive, displayed more aggressive behaviors, and were less likely to approach novel objects. In contrast, monkeys in the low-cortisol cluster were more likely to approach and explore novel objects. Representative animals with high or low cortisol profiles were scanned with Magnetic Resonance Imaging to evaluate structural differences in global and regional gray matter (GM) and white matter (WM) volumes. Monkeys with higher cortisol reactivity evinced less hemispheric brain asymmetry, due to decreased GM in the right hemisphere. Stress reactivity was inversely related to global GM and positively related to total cerebrospinal fluid volume. This inverse relationship was also observed in several stress-sensitive regions, including prefrontal and frontal cortices. Our study demonstrates that population variation in pituitary-adrenal activity is related to behavioral disposition and cerebral structure in this nonhuman primate species
A diffusion tensor MRI atlas of the postmortem rhesus macaque brain
The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states, exposures, and/or aging. Diffusion tensor imaging (DTI) -based MRI brain atlases are widely used in both human and macaque brain imaging studies because of the unique contrasts, quantitative diffusion metrics, and diffusion tractography that they can provide. Previous MRI and DTI atlases of the rhesus brain have been limited by low contrast and/or low spatial resolution imaging. Here we present a microscopic resolution MRI/DTI atlas of the rhesus brain based on 10 postmortem brain specimens. The atlas includes both structural MRI and DTI image data, a detailed three-dimensional segmentation of 241 anatomic structures, diffusion tractography, cortical thickness estimates, and maps of anatomic variability amongst atlas specimens. This atlas incorporates many useful features from previous work, including anatomic label nomenclature and ontology, data orientation, and stereotaxic reference frame, and further extends prior analyses with the inclusion of high-resolution multi-contrast image data
Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia
Infections and inflammatory conditions during pregnancy can dysregulate neural development and increase the risk for developing autism and schizophrenia. The following research utilized a nonhuman primate model to investigate the potential impact of a mild endotoxemia during pregnancy on brain maturation and behavioral reactivity as well as the infants’ hormone and immune physiology. Nine pregnant female rhesus monkeys (Macaca mulatta) were administered nanogram concentrations of lipopolysaccharide (LPS) on two consecutive days, six weeks before term, and their offspring were compared to nine control animals. When tested under arousing challenge conditions, infants from the LPS pregnancies were more behaviorally disturbed, including a failure to show a normal attenuation of startle responses on tests of prepulse inhibition. Examination of their brains at one year of age with magnetic resonance imaging (MRI) revealed the unexpected finding of a significant 8.8% increase in global white matter volume distributed across many cortical regions compared to controls. More selective changes in regional gray matter volume and cortical thickness were noted in parietal, medial temporal, and frontal areas. While inhibited neural growth has been described previously after prenatal infection and LPS administration at higher doses in rodents, this low dose endotoxemia in the monkey is the first paradigm to produce a neural phenotype associated with augmented gray and white matter growth
Gut microbial and metabolic profiling reveal the lingering effects of infantile iron deficiency unless treated with iron
SCOPE: Iron deficiency (ID) compromises the health of infants worldwide. Although readily treated with iron, concerns remain about the persistence of some effects. Metabolic and gut microbial consequences of infantile ID were investigated in juvenile monkeys after natural recovery (pID) from iron deficiency or post-treatment with iron dextran and B vitamins (pID+Fe).METHODS AND RESULTS: Metabolomic profiling of urine and plasma is conducted with 1 H nuclear magnetic resonance (NMR) spectroscopy. Gut microbiota are characterized from rectal swabs by amplicon sequencing of the 16S rRNA gene. Urinary metabolic profiles of pID monkeys significantly differed from pID+Fe and continuously iron-sufficient controls (IS) with higher maltose and lower amounts of microbial-derived metabolites. Persistent differences in energy metabolism are apparent from the plasma metabolic phenotypes with greater reliance on anaerobic glycolysis in pID monkeys. Microbial profiling indicated higher abundances of Methanobrevibacter, Lachnobacterium, and Ruminococcus in pID monkeys and any history of ID resulted in a lower Prevotella abundance compared to the IS controls.CONCLUSIONS: Lingering metabolic and microbial effects are found after natural recovery from ID. These long-term biochemical derangements are not present in the pID+Fe animals emphasizing the importance of the early detection and treatment of early-life ID to ameliorate its chronic metabolic effects.</p