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Abstract
Infections and inflammatory conditions during pregnancy can dysregulate neural development and
increase the risk for developing autism and schizophrenia. The following research utilized a
nonhuman primate model to investigate the potential impact of a mild endotoxemia during
pregnancy on brain maturation and behavioral reactivity as well as the infants’ hormone and
immune physiology. Nine pregnant female rhesus monkeys (Macaca mulatta) were administered
nanogram concentrations of lipopolysaccharide (LPS) on two consecutive days, six weeks before
term, and their offspring were compared to nine control animals. When tested under arousing
challenge conditions, infants from the LPS pregnancies were more behaviorally disturbed,
including a failure to show a normal attenuation of startle responses on tests of prepulse inhibition.
Examination of their brains at one year of age with magnetic resonance imaging (MRI) revealed
the unexpected finding of a significant 8.8% increase in global white matter volume distributed
across many cortical regions compared to controls. More selective changes in regional gray matter
volume and cortical thickness were noted in parietal, medial temporal, and frontal areas. While
inhibited neural growth has been described previously after prenatal infection and LPS
administration at higher doses in rodents, this low dose endotoxemia in the monkey is the first
paradigm to produce a neural phenotype associated with augmented gray and white matter growth.
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1. Introduction
Prenatal infections and inflammatory responses during pregnancy can result in adverse
effects on brain development that contribute to the etiology of affective disorders or
neurodevelopmental pathologies like autism and schizophrenia [1-3]. One behavioral feature
common to these disorders is a heightened reactivity to visually or acoustically arousing
stimuli, often manifest by greater anxiousness and impaired sensory-motor integration,
which is evident on prepulse inhibition (PPI) tests of attention and startle [3-5]. In addition,
many prenatal challenge studies in rodents and nonhuman primates have found that the
offspring exhibit abnormal neuroendocrine and immune responses [6-8].

Developmental abnormalities caused by prenatal infections can be mimicked by the
administration of noninfectious agents that evoke inflammatory responses, such as
polyriboinosinic-polyribocytidilic acid (Poly I:C) or lipopolysaccharide (LPS) [9-12].
Therefore, it appears that one common mediating pathway initiating this pathogenesis is a
disruption of placental functioning by proinflammatory cytokines [13,14]. In turn, cascading
effects on the developing brain impact postnatal behavior in ways that resemble
dysfunctional features seen in autism and schizophrenia [2,11,15]. Teratogenic disruptions
of synapse formation, cellular proliferation, and myelination may promote these abnormal
neural phenotypes [16,17]. For example, prenatal LPS treatment in rodents induces white
matter (WM) abnormalities and reduced myelin density in the corpus callosum, as well as in
cortical and subcortical regions [15-18,19]. Poly I:C administration also reduces gray matter
(GM) in medial temporal areas such as entorhinal cortex and hippocampus [9,20]. In
addition, influenza virus infections in pregnant mice result in pups with reduced cortical
thickness in the frontal lobe [6], and juvenile rhesus monkeys exposed to influenza
prenatally have smaller GM volumes in several cortical regions, including frontal, temporal
and parietal cortices [21]. Yet, while prenatal infection typically inhibits neural growth and
proliferation, increased GM and WM in certain regions has been found in many individuals
with autism--at least early in development [22,23].

To replicate and extend behavioral and neural findings from rodents and nonhuman
primates, we sought to model a moderate, self-limiting bacterial infection during pregnancy
by administering LPS to gravid female monkeys. Because monkeys and humans are
comparatively sensitive to LPS, a low dose protocol was employed to minimize the overt
pathology that occurs when high concentrations damage the placenta and fetal brain [24].
Prior research in juvenile monkeys has shown that 4 ng/kg of LPS induces transient
increases in IL-6 and cortisol for up to 24 h [25]. The offspring from the prenatal LPS
condition were then assessed longitudinally across the first 1.5 years of life. The a priori
prediction was that infants from an endotoxin-challenged pregnancy would: 1) be more
behaviorally reactive; 2) manifest signs of neuroendocrine and immune dysregulation; 3)
show changes in cortical volume and thickness in sensitive brain areas related to emotional
regulation and attention. Although we found the expected effects on behavior, the brains of
monkeys from LPS pregnancies showed robust increases in WM volumes and selective GM
changes in parietal and temporal regions [22]. This novel brain phenotype may be useful for
investigating certain neurodevelopmental disorders like autism.

2. Methods
2.1. Animals and prenatal treatments

Details of the LPS administration to gravid females and effects on leukocyte demargination
and circulating IL-6 levels are provided in Supplement Table 1. Briefly, nine pregnant
monkeys (Macaca mulatta) received two intravenous injections of LPS each morning on
Days 125 and 126 of their 169-day pregnancy (2 ng/kg, n=1; 4 ng/kg, n=8). Viral infection
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during this prenatal period had been found to induce neurodevelopmental and behavioral
alterations [21]. The lower 2 ng/kg dose was used just once to assess toxicity and possible
risk of miscarriage. Two other gravid females were piloted at the 4 ng/kg dose before the
remaining 6 females in this condition were administered with LPS. The nine control mothers
were either administered identical volumes of saline (n=2) or not handled (n=7), neither of
which significantly affected maternal IL-6 or leukocyte counts. Gestational length, neonatal
weight and subsequent growth after birth were determined. Both prenatal conditions
included similar numbers of male and female offspring (n= 8 and 10, respectively). The
schedule of postnatal testing is summarized in Supplement Table 2. After it was determined
that growth patterns and health among 3 initial LPS offspring were not greatly perturbed,
additional testing incorporating PPI, cortisol assessment, and in vitro cellular stimulation
assays was completed on the remaining cohort of subjects (LPS=6, Control=9). Researchers
who collected behavioral and MRI data, as well as assayed physiological samples, were
blind to the monkeys’ prenatal conditions. All experimental procedures were approved by
the Institutional Animal Care and Use Committee and the Office of Biological Safety at the
University of Wisconsin—Madison.

2.2. Behavioral Assessments
2.2.1. Neonatal, mother-Infant, and peer behavior—Temperament, neuromotor
reflexes, and attentional responses were assessed at two weeks of age using the Infant
Behavioral Assessment Scale (IBAS), adapted from Brazelton [26] for use in monkeys
[27,28]. Factor loadings of 4 IBAS categories, which are based on 29 test items, are
described in detail in a recent report from our group [29]. Social interactions were observed
between each infant and its mother from 1-4 months and with peers from 6-7 months during
twelve non-contiguous 5-min periods per month.

2.2.2. Human Intruder Paradigm—Stress reactivity was assessed at 8-9 months of age
using a modified version of the Human Intruder Paradigm [25,30]. Briefly, hostile and
fearful behaviors defined in Supplement Table 3 were assessed during 5 stare (SC) and no
eye contact (NEC) trials, each of 5 min. duration.

2.2.3. Prepulse Inhibition—Using a PPI protocol for monkeys [31], responses to
acoustical startle and the extent of adaptation after pairing the stimulus probe with a softer
prepulse sound were assessed at 10-12 mo. of age. Each infant was tested in a sound-
attenuating booth while freely moving in a small cage. Shifts in movement were recorded
along 3 dimensions and computed as x2+y2+z2 to remove direction effects. Startle sounds
were played at either 105 or 115 dB for 40 msec. The prepulse was an 80 dB broadcast for
20 msec at intervals of 45, 120, or 500 msec before the startle probe. After a 15 min
acclimation, each set of prepulse and startle probes was repeated four times across the 1 h
test. Acceleration was used to index startle to remove the influence of body weight. Percent
reduction in startle after prepulses, as compared to the trials with the startle probe alone, was
computed using the following formula: (100 × [(mean Probe alone trials - mean Prepulse &
Probe trials) / mean Probe alone trials]).

2.3. Physiological assessments
2.3.1. Interleukin-6 measures—At 2, 4, and 7 months of age, whole blood was collected
from undisturbed animals, diluted 1:1 with IMD buffer, and separately stimulated with
phytohemagglutinin (PHA; 5 μg/mL) for 48 h, LPS (10 ng/mL) for 24 h, or with saline. IL-6
levels in the supernatant were then quantified by ELISA. Blood samples were also cultured
immediately after the HIP challenge test at 8-9 mo of age. Baseline blood levels of IL-6 in
vivo were determined at 1 year of age and after administration of 4 ng/kg LPS i.v. (at 1.5
years of age) to evaluate if the monkeys showed signs of a possible endotoxin tolerance or
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sensitization [32]. Plasma IL-6 levels were determined at 1 and 3 h after this injection of
LPS.

2.3.2. Cortisol Measures—Adrenal hormone levels were determined under basal and
challenge conditions using a week-long protocol [21]. Briefly, cortisol was assessed at
baseline, after transfer to a novel cage, 2 days later following acclimation, and on the day
after overnight dexamethasone treatment.

2.4. Neuroimaging
At approximately one year of age, T1 and T2-weighted neural images were acquired using a
GE Signa 3-T scanner (General Electric Systems, Milwaukee, WI). One animal was re-
scanned at 1.5 years of age due to a positioning error of its head in the stereotax platform,
which lead to inadequate normalization to the brain template; the new scan acquisition and
the variation in age at scan did not bias group differences. For the neuroimaging scan
acquisition, the animals were initially anesthetized by administration of ketamine
hydrochloride (10 mg/kg, i.m.) followed by medetomidine (50 μg/kg, i.m.) and placed into
an 18 cm quadrature extremity coil (IGC Medical Advances, Milwaukee, WI). Details of the
scan acquisition and data analysis have been described previously [21, 33]. For the T1-
weighted scan, a high resolution axial Inversion Recovery-prepped 3D-SPGR sequence was
used: inversion time=600 msec; TR=8.6 msec; TE=2.0 msec; FOV=160 mm; flip
angle=10°; matrix=256×256×124; slice thickness=1.5 mm; slice gap=−0.5 mm;
bandwidth=15.63; voxel resolution of 0.234 × 0.234 × 0.498 mm. The T2-weighted scan had
the following parameters: TR=12,000 msec; TE=92.8 msec; FOV=160 mm; flip angle=90°;
matrix=512 × 512; slice thickness=1.5 mm; slice gap=0 mm; bandwidth=31.25; voxel
resolution of 0.27 × 0.27 × 1.5 mm. T1 and T2 weighted scans were aligned using a 3-point
localizer during the scanning session. For image preprocessing, an automated method was
first used to skull-strip a given brain, followed by affine coregistration and then non-linear
12 parameter normalization to a customized juvenile rhesus monkey template [34]. T1 and
T2 probability maps were jointly used for segmentation of GM, WM, and cerebrospinal
fluid (CSF). Figure 1 depicts the segmentation of tissue classes for regional parcellation and
the derivation of cortical thickness [34,35]. Volume was derived for each parcellated region
of interest for GM and WM segments.

2.5. Statistical analyses
Analyses were conducted using SPSS 15.0 (Chicago, IL). Effects of Prenatal Condition
(LPS vs. Control) on behavior or physiology across Age or Trials were analyzed with either
mixed repeated measures analysis of variance or covariance (ANOVA, ANCOVA) or by an
omnibus F-test. Multiple scores in behavioral tests were collapsed together to improve
homoscedasticity of variance and normality. Square root or base log 10 transformations
corrected variables that deviated from normality, homoscedasticity, or sphericity. Two-tailed
t-tests were used in post hoc analyses of individual variables. Omnibus repeated measures
tests were used to guard against experiment-wise error for neural region of interest analyses.
Intracranial volume (ICV)-corrected values were also examined. Alpha level was set at .05.

3. Results
3.1. Maternal response to LPS and neonatal health

Compared to pre-injection blood levels, administration of LPS resulted in a significant
increase in IL-6 levels in the gravid females [F(1,8)=25.10, p=.001]. An acute increase in
neutrophils [F(1,8)=16.64, p<.01] and decrease in lymphocytes [F(1,8)=40.99, p<.001] were
evident in all LPS-injected animals. Post hoc tests confirmed these changes for Day 1 and 2
(see Supplement Table 1). Physiological values in control animals remained similar to
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baseline across the 2 days. All infants were born normally without delivery complications.
Prenatal LPS treatment did not affect gestation length, neonatal weight, and subsequent
growth patterns. No significant differences were noted in maternal care or rate of infant
maturation.

3.2. Neuroimaging
When scanned at one year of age, the intracranial volume (ICV) of monkeys from the LPS-
treated pregnancies was marginally 5.9% larger than for the control monkeys (Tables 1 and
2). More dramatically, LPS monkeys had a significant 8.8% increase in mean global WM
volume. Global GM, total CSF, and ventricular size did not differ statistically from controls.
Variations in age at scan did not account for these results. Omnibus tests were conducted to
guard against type 1 error and justify volumetric analyses for regions of interest (see
Supplement Text 1). Nearly all WM regions were significantly larger in LPS-exposed
monkeys, whereas selective GM changes were seen in parietal and frontal areas (Tables 1
and 2; Figure 2), as well as in hippocampus and putamen. The findings for cortical thickness
supported the GM results (Supplement Table 4), with marginally thicker GM in the right
parietal and frontal lobes, but thinner GM in medial temporal lobe. To assess the relative
magnitude of the regional changes, the volumes and cortical thickness were divided by the
monkey’s ICV or its cube root, respectively. The statistical significance of volumetric and
cortical thickness results remained largely unchanged.

3.3. IL-6 and Cortisol levels
As detailed in Supplement Figures 1 and 2, there was a relatively mild impact on pituitary-
adrenal activity and a complex bidirectional effect on IL-6 responses in LPS-exposed
offspring over time. When monkeys from the LPS-treated pregnancies were moved to a new
cage, their cortisol levels were higher after 2 days relative to baseline, as compared to
hormonal adaptation of control animals. Following overnight dexamethasone treatment, the
morning cortisol levels of the LPS-exposed monkeys were initially more suppressed, but by
afternoon the cortisol levels were elevated when compared to controls. While with their
mothers at 2 and 4 months of age, infants from the LPS condition initially appeared to show
more cellular reactivity when their blood was stimulated in vitro with PHA. However, one
month after being weaned from the mother, their cellular response to PHA as reflected by
IL-6 in the supernatant was significantly lower than those of control offspring.

3.4. Behavior
3.4.1. IBAS at 2 weeks of age—Some behavioral differences were already evident at 2
weeks of age, when infants from LPS-treated pregnancies received higher Emotionality
ratings during the IBAS test [t(15)=3.17, p<.01]. One LPS offspring was excluded from this
analysis because it appeared to become weak and fatigued by the testing. This exclusion did
not influence the significance of results. A repeated measures omnibus on all variables
constituting this Emotionality factor [F(1,15)=6.88, p<.05], followed by t-tests, showed that
LPS offspring were also significantly hyperresponsive for the constituent test items and
related measures such as vocalizations (see Supplement Table 5). No other differences in
behavioral maturation or activity were evident at this age.

3.4.2. Social interactions during first 7 months of age—No overt effect of the
prenatal LPS treatment was seen on infants’ social and exploratory behavior while observed
undisturbed with the mother or after weaning into small peer groups.

3.4.3. HIP behavior and post-HIP IL-6 response at 8-9 months of age—As
detailed in Figure 3, 8-9 month old LPS offspring exhibited a pattern of marked behavioral
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reticence in contrast to their earlier reactions during the IBAS. While this test typically
evokes a range of anxious and hostility behaviors that are listed in Supplement Table 3, the
LPS progeny showed these behaviors less frequently than controls (e.g., vocalizations), both
during the NEC and SC phases despite more exploratory activity during the baseline phase.
Specifically, at baseline, LPS animals initially engaged in more tactile and oral exploration
of their environment: 10% of the time compared to 4.3% for controls [t(16)=2.81, p<.05].
Both groups spent the remainder of this period predominantly moving and did not differ
significantly. Following entrance of the experimenter into the room, LPS offspring became
more behaviorally reticent during the SC and NEC phases. During the SC phase, a Stress
Behavior × Prenatal Condition interaction [F(1,16)=3.09, p<.05], followed by post hoc
testing, showed that the LPS animals spent less time or performed fewer bouts of freezing
[t(16)=2.23, p<.05], self-contact [t(16)=3.05, p<.01], and experimenter-oriented fixation
[t(16)=2.19, p<.05]. They also engaged in less hostile behavior toward the observer
[t(16)=2.41, p<.05], represented as a mean percentage of time spent during a 300s trial
(Figure 3A). As compared to controls, the mean frequency of vocalizations was less during
the SC phase [t(16)=2.41, p<.05] (Figure 3B). Monkeys from LPS-treated pregnancies also
appeared less responsive during the NEC phase, during which they froze less often
[t(16)=2.75, p<.05] and engaged in less visual fixation toward the experimenter [t(16)=2.75,
p<.05]. The mean frequency of fearful non-vocalization behaviors is depicted in Figure 3C.
Immediately after the HIP, blood was drawn and stimulated with phytohemagglutinin (PHA)
to examine IL-6 levels. When blood was collected immediately after the test and stimulated
in vitro with PHA, there was a significantly greater stress-related suppression of IL-6 release
in the blood taken from LPS-exposed monkeys [t(13)=2.16, p<.05] (Figure 3D).

3.4.4. Acoustical startle and PPI at 10-12 months of age—When PPI tests were
conducted at 10-12 months of age, monkeys from the LPS-treated pregnancies were found
to freeze and startle less than controls across the four initial 115 dB pulses [F(1,13)=11.56,
p<.01]. Mean pulse-induced startles were reduced by 55% across all subsequent pulse trials
[F(8,104)=2.35, p<.05] (Figure 4A). For %PPI at 115 dB, a repeated measures omnibus
indicated that juvenile monkeys from LPS pregnancies had a dysregulated response
following the prepulse across the 3 inter-stimulus intervals (ISI) [F(1,13)=9.99, p<.05].
Specifically, for these monkeys, the prepulse generally did not suppress but rather
augmented the startle—a facilitative event noted by others after some prenatal challenge
paradigms [18]. Post hoc analyses indicated that this change in %PPI was evident at the ISI
of 45 msec [t(13)=2.46, p<.05], 120 msec [t(13)=3.45, p<.01], and 500 msec [t(13)=2.73,
p<.05]. Similarly, at 105 dB, LPS animals had a potentiated startle [F(1,13) = 7.01, p<.05].
This effect occurred at 45 msec [t(13)=2.45, p<.05] and 120 msec [t(13)=2.94, p<.05]. The
startle data for 105 and 115 dB probes were also analyzed altogether. The joint analysis
indicated that the LPS-induced change in %PPI was significant for all 3 ISIs at 45 msec
[t(13)=2.72, p<.05], 120 msec [t(13) = 3.02, p<.01], and 500 msec [t(13)=2.60, p<.05])
(Figure 4B). Three LPS monkeys manifested high reactivity to prepulse-pulse trials in the
45ms and 500ms ISI trials, producing wide variance.

4. Discussion
Our study has generated novel findings on the neural effects of a mild endotoxemia
paradigm in pregnant monkeys using nanogram amounts of LPS. Specifically, this 2-day
treatment expanded WM volume in many regions and selectively enlarged GM in the infants
from LPS-treated pregnancies. This neurodevelopmental profile bears some similarity to the
early brain overgrowth described in many individuals with autism [22,23]. In contrast,
endotoxin and viral infection models in rodents typically result in reduced neural growth or
no effect depending on the gestational timing and species [2]. Even though the brain effects
in monkeys were opposite from the typically reported direction, the behavioral profile of
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these offspring from the LPS-treated pregnancies appeared comparable to several rodent
models of prenatal infection and stress [36,37].

A similar experiment by our laboratory involving influenza virus infection during this period
of gestation induced the more commonly observed reduction in the neural parenchyma [21].
Thus, it does not seem that differences in gestational timing and fetal brain maturation
between monkeys and rats account for the differential outcome [38-41], but rather the
degree of maternal inflammation induced by the various paradigms. Most mouse and rat
models use concentrations of endotoxin in the microgram to milligram range, which can
cause widespread physiological activation, including a marked retardation of fetal growth
and some fetal death [42]. By contrast, the IL-6 levels post-LPS were only modestly
upregulated in gravid monkeys over 2 days. Nevertheless, the elevated IL-6 likely crossed
into the amniotic fluid and fetal compartment and was sufficient to induce the observed
neurodevelopmental changes [12,43]. Indeed, IL-6 knockout mice are less likely to show
neurobehavioral effects after prenatal inflammatory challenges [12]. It is not clear if the
LPS-induced brain differences observed in our monkeys when they were approximately one
year of age reflect an early overgrowth or an accelerated maturation that might persist into
adulthood as seen in some rodent and monkey models [9,22,44,45]. The overall brain size
and WM volumes of the LPS-exposed monkeys were roughly 6 months ahead of
comparably aged infants from normal pregnancies [33].

The most striking finding in the offspring from the prenatal LPS condition was the
significant 8.8% increase in global WM volume and a trend toward whole brain
enlargement. As noted above, these results differed from the commonly reported decrements
in brain size and neural development in rodents and sheep following E. coli, and other
teratogenic and inflammatory stimulation [19,46-48]. Regional WM was increased
throughout the hemispheres, especially in the more rostral and temporal areas. The effects
on absolute GM and WM volume were not evident in the occipital lobe, however, which
matures early in the fetal monkey and thus may have been spared [49]. This enlargement
may be due to interference with the dendritic and synaptic pruning that normally occurs
during gestation [50,51]. Alternatively, prenatal LPS may have accelerated the rate of
myelination postnatally. Pro-oligodendrocyte precursors can be stimulated by certain
mitogens and inflammatory stimuli [52,53] and could have resulted in enhanced myelin
development.

Circumscribed increases in GM volume and, to a lesser extent, in cortical thickness were
also seen in the parietal and frontal lobes, to approximately 4% more than controls. Alcohol
or stress exposures typically reduce volume in these regions [54,55]. Our previous study on
influenza virus infections [21] also found a decreased volume of approximately 6% and 10%
for frontal and parietal lobes, respectively. Increased subcortical volumes were also seen in
hippocampus and putamen in offspring from the prenatal LPS condition. It has been shown
that LPS exposure to mice on gestational day 17 can increase cell density within the CA
fields [56], and enlargement of the hippocampus is noted in some children with autism
[57,58]--although others have noted no changes [59] or decreased GM relative to total brain
volume [60]. In contrast to the general enlargement, the decreased cortical thickness in the
medial temporal lobe of the LPS-exposed monkeys has been observed in human paradigms
[55]. Damage to medial temporal lobe including entorhinal and perirhinal cortices can
disrupt sensorimotor gating [61] and also sensitize rhesus monkeys to aversive stimuli [62].
LPS-induced disruption in the neurocircuitry or GM of this area could underlie the changes
in behavioral reactivity observed in the LPS-exposed offspring under arousing conditions.

Changes in the monkeys’ temperament were evident throughout development, which
corresponded to our periodic finding of physiological differences in IL-6 levels. LPS infants
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showed heightened responsiveness (e.g., more vocalizations) during the IBAS testing at 2
weeks of age, whereas they later became behaviorally reticent (e.g., fewer vocalizations)
during the HIP at 8-9 months. Following weaning from the mother, and also immediately
after the HIP test, there was a greater stress-induced inhibition of PHA-stimulated IL-6
production in vitro. They also startled less to PPI test pulses and failed to manifest the
typical adaptation after prepulse sounds. These behavioral effects are similar to deficits in
rodents prenatally treated with proinflammatory cytokines or endotoxin [12,18]. These
effects are also reminiscent of the poorer behavioral modulation seen in inhibited children at
risk for affective psychopathology [63], although this animal model did not replicate several
of the key features of autism, such as social and communication deficits. The impact of our
prenatal treatment on HPA activity was also less than described for most rodent
endotoxemia models [64,65], but the LPS-exposed animals did take longer to adapt to
transfer into a novel cage and had a differential response to negative glucocorticoid feedback
after overnight Dexamethasone treatment.

5. Conclusion
In summary, a 2-day endotoxin provocation during pregnancy had a striking impact on
many brain regions, increasing GM and WM volumes, and altering cortical thickness.
Notwithstanding these marked changes in the brain phenotype, the LPS- exposed monkeys
were healthy and appeared behaviorally and physiologically normal until examined under
arousing and challenging conditions. This new primate model may afford an opportunity to
examine processes that mediate the neural overgrowth seen in some neurodevelopment
disorders such as autism, where problems with attention and reactivity are sometimes
associated with regional increases in either cortical GM or WM [66-68], as well as in
subcortical structures including hippocampus and putamen [22,58,66].
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative segmentation and parcellation of the brain into regional GM and WM
volumes, respectively (top row). Cortical thickness was also determined in these
hemispheric regions by examining the distance between the pial and WM surfaces (bottom
row) [32].
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Figure 2.
The percentage change in grey matter and white matter cortical volumes induced by prenatal
LPS treatment (n=9) relative to controls (n=9). *=p<.05, **=p<.01.
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Figure 3.
Frequency and percentage duration of HIP behavior during the stare challenge (SC) and no
eye contact (NEC), as well as the post-HIP in vitro assessment of IL-6 production. Monkeys
from the control (n=9) and LPS (n=9) pregnancies were assessed. See Supplementary Table
3 for the list of behaviors recorded. Data are depicted as mean ± SEM. *=Student’s t-test,
p<.05.
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Figure 4.
Behavioral responses during the Prepulse Inhibition (PPI) test among LPS treatment (n=6)
and control (n=9) monkeys. (A) Mean startle reaction to a pulse sound probe during the PPI.
(B) Change in startle response following an acoustic prepulse (Percentage PPI) calculated
from the prepulse trials combined for the 105 and 115 dB pulses. Data are depicted as mean
± SEM. *=p<.05.;**=p<.01 (Student’s t-test).
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Table 2

Gray matter volumes, both globally and in cortical regions and select subcortical structures, for control (n=9)
and LPS (n=9) progeny at one year of age.

Neural Area Control Mean
(voxels)

LPS Mean
(voxels)

p-value
ICV uncorrected

p-value
ICV corrected

Intracranial volume 88 512 ± 1 194 93 727 ± 2 625 p ≤ .09 N/A

Global GM 50 648 ± 792 53 432 ± 895

Cortical Regions

Prefrontal 5 055 ± 127 5 501 ± 242

Frontal 5 436 ± 129 5 977 ± 191 p ≤ .05 p ≤ .05

Cingulate 1 628 ± 23 1 696 ± 63

Temporal Auditory 3 745 ± 78 3 911 ± 128

Temporal Visual 5 605 ± 99 5 863 ± 192

Medial Temporal 2 217 ± 43 2 286 ± 57

Parietal 5 812 ± 133 6 385 ± 234 p ≤ .05 p ≤ .07

Occipital 8 066 ± 156 8 211 ± 252 p ≤ .06

Sub-Cortical Regions

Caudate 606 ± 12 624 ± 16

Putamen 860 ± 11 921 ± 24 p ≤ .05

Hippocampus 400 ± 5 429 ± 11 p ≤ .05

Amygdala 381 ± 6 402 ± 11

Cerebellum 4 212 ± 98 4 536 ± 157

Brainstem 226 ± 8 230 ± 9

Mean±SEM is reported for raw GM volume estimates of monkeys from control and LPS pregnancies. The absolute value of each region of interest
was divided by subject’s ICV to assess differential effects on GM of each region relative to global GM. The small size of the insula precluded
accurate estimation and analysis. Blank spaces signify non-significant results.
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