9 research outputs found

    Circulating cell free DNA during definitive chemo-radiotherapy in non-small cell lung cancer patients - initial observations.

    Get PDF
    BACKGROUND: The overall aim was to investigate the change over time in circulating cell free DNA (cfDNA) in patients with locally advanced non-small cell lung cancer (NSCLC) undergoing concurrent chemo-radiotherapy. Furthermore, to assess the possibility of detecting circulating cell free tumor DNA (ctDNA) using shallow whole genome sequencing (sWGS) and size selection. METHODS: Ten patients were included in a two-phase study. The first four patients had blood samples taken prior to a radiation therapy (RT) dose fraction and at 30 minutes, 1 hour and 2 hours after RT to estimate the short-term dynamics of cfDNA concentration after irradiation. The remaining six patients had one blood sample taken on six treatment days 30 minutes post treatment to measure cfDNA levels. Presence of ctDNA as indicated by chromosomal aberrations was investigated using sWGS. The sensitivity of this method was further enhanced using in silico size selection. RESULTS: cfDNA concentration from baseline to 120 min after therapy was stable within 95% tolerance limits of +/- 2 ng/ml cfDNA. Changes in cfDNA were observed during therapy with an apparent qualitative difference between adenocarcinoma (average increase of 0.69 ng/ml) and squamous cell carcinoma (average increase of 4.0 ng/ml). Tumor shrinkage on daily cone beam computer tomography scans during radiotherapy did not correlate with changes in concentration of cfDNA. CONCLUSION: Concentrations of cfDNA remain stable during the first 2 hours after an RT fraction. However, based on the sWGS profiles, ctDNA represented only a minor fraction of cfDNA in this group of patients. The detection sensitivity of genomic alterations in ctDNA strongly increases by applying size selection

    Human immunotypes impose selection on viral genotypes through viral epitope specificity

    Get PDF
    BACKGROUND: Understanding the genetic interplay between human hosts and infectious pathogens is crucial for how we interpret virulence factors. Here, we tested for associations between HIV and host genetics, and interactive genetic effects on viral load (VL) in HIV+ ART-naive clinical trial participants. METHODS: HIV genomes were sequenced and the encoded amino acid (AA) variants were associated with VL, human single nucleotide polymorphisms (SNPs) and imputed HLA alleles, using generalized linear models with Bonferroni correction. RESULTS: Human (388,501 SNPs) and HIV (3,010 variants) genetic data was available for 2,122 persons. Four HIV variants were associated with VL (p-values<1.66×10 -5). Twelve HIV variants were associated with a range of 1-512 human SNPs (p-value<4.28×10 -11). We found 46 associations between HLA alleles and HIV variants (p-values<1.29×10 -7). We found HIV variants and immunotypes when analyzed separately, were associated with lower VL, whereas the opposite was true when analyzed in concert. Epitope binding prediction showed HLA alleles to be weaker binders of associated HIV AA variants relative to alternative variants on the same position. CONCLUSIONS: Our results show the importance of immunotype specificity on viral antigenic determinants, and the identified genetic interplay puts emphasis that viral and human genetics should be studied in the context of each other

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Delta, Y144Delta, and LLA241/243Delta. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    Clinical characterization and identification of rare genetic variants in atypical hemolytic uremic syndrome : a Swedish retrospective observational study

    No full text
    INTRODUCTION: Complement-mediated atypical hemolytic uremic syndrome (aHUS) is an ultra-rare renal disease primarily caused by genetic alterations in complement proteins. The genetic work-up required for confirmation of diagnosis is complicated and not always logistically accessible. The aim of the present study was to apply a diagnostic scheme compliant with the ACMG guidelines to investigate the prevalence of complement-mediated aHUS among subjects formerly included in a retrospective cohort of clinically suspected aHUS. Clinical outcomes and genetic correlations to complement analyses were assessed.METHODS: Subjects were investigated with medical record reviewing, inquiries and laboratory analyses composed of whole genome sequencing; ELISA for factor I, factor H and factor H-specific antibodies; nephelometry for complement components 3/4; flow cytometry for CD46 surface expression and immunoblotting for the presence of factor H-related protein 1.RESULTS: In total, 45% (n=60/134) of the subjects were deceased at the time of study. Twenty of the eligible subjects consented to study participation. Based on genetic sequencing and clinical characteristics, six were categorized as definite/highly suspected complement-mediated aHUS, ten as non-complement-mediated aHUS and four as having an HUS-like phenotype. In the complement-mediated aHUS group, two subjects had not received an aHUS diagnosis during the routine clinical management. Disease-contributing/likely disease-contributing genetic variants were identified in five subjects, including a novel missense variant in the complement factor H gene (c.3450A>G,p.I1150M).CONCLUSION: The study illustrates the risk for misdiagnosis in the management of patients with complement-mediated aHUS and the importance of a comprehensive assessment of both phenotype and genotype to reach a diagnosis. This article is protected by copyright. All rights reserved

    Genomic and phenotypic evolution of achromobacter xylosoxidans during chronic airway infections of patients with cystic fibrosis

    No full text
    Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the wholegenome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and b-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions

    Circulating cell free DNA during definitive chemo-radiotherapy in non-small cell lung cancer patients - initial observations

    No full text
    BACKGROUND: The overall aim was to investigate the change over time in circulating cell free DNA (cfDNA) in patients with locally advanced non-small cell lung cancer (NSCLC) undergoing concurrent chemo-radiotherapy. Furthermore, to assess the possibility of detecting circulating cell free tumor DNA (ctDNA) using shallow whole genome sequencing (sWGS) and size selection. METHODS: Ten patients were included in a two-phase study. The first four patients had blood samples taken prior to a radiation therapy (RT) dose fraction and at 30 minutes, 1 hour and 2 hours after RT to estimate the short-term dynamics of cfDNA concentration after irradiation. The remaining six patients had one blood sample taken on six treatment days 30 minutes post treatment to measure cfDNA levels. Presence of ctDNA as indicated by chromosomal aberrations was investigated using sWGS. The sensitivity of this method was further enhanced using in silico size selection. RESULTS: cfDNA concentration from baseline to 120 min after therapy was stable within 95% tolerance limits of +/- 2 ng/ml cfDNA. Changes in cfDNA were observed during therapy with an apparent qualitative difference between adenocarcinoma (average increase of 0.69 ng/ml) and squamous cell carcinoma (average increase of 4.0 ng/ml). Tumor shrinkage on daily cone beam computer tomography scans during radiotherapy did not correlate with changes in concentration of cfDNA. CONCLUSION: Concentrations of cfDNA remain stable during the first 2 hours after an RT fraction. However, based on the sWGS profiles, ctDNA represented only a minor fraction of cfDNA in this group of patients. The detection sensitivity of genomic alterations in ctDNA strongly increases by applying size selection
    corecore