26 research outputs found

    Caspase-2-induced Apoptosis Is Dependent on Caspase-9, but Its Processing during UV- or Tumor Necrosis Factor-dependent Cell Death Requires Caspase-3

    Get PDF
    Mammalian caspases are a family of cysteine proteases that plays a critical role in apoptosis. We have analyzed caspase-2 processing in human cell lines containing defined mutations in caspase-3 and caspase-9. Here we demonstrate that caspase-2 processing, during cell death induced by UV irradiation, depends both on caspase-9 and caspase-3 activity, while, during TNF-alpha-dependent apoptosis, capase-2 processing is independent of caspase-9 but still requires caspase-3. In vitro procaspase-2 is the preferred caspase cleaved by caspase-3, while caspase-7 cleaves procaspase-2 with reduced efficiency. We have also demonstrated that caspase-2-mediated apoptosis requires caspase-9 and that cells co-expressing caspase-2 and a dominant negative form of caspase-9 are impaired in activating a normal apoptotic response and release cytochrome c into the cytoplasm. Our findings suggest a role played by caspase-2 as a regulator of the mitochondrial integrity and open questions on the mechanisms responsible for its activation during cell death

    Caspase-2 Can Trigger Cytochrome c Release and Apoptosis from the Nucleus

    Get PDF
    The cysteine proteases specific for aspartic residues, known as caspases, are localized in different subcellular compartments and play specific roles during the regulative and the executive phase of the cell death process. Here we investigated the subcellular localization of caspase-2 in healthy cells and during the execution of the apoptotic program. We have found that caspase-2 is a nuclear resident protein and that its import into the nucleus is regulated by two different nuclear localization signals. We have shown that in an early phase of apoptosis caspase-2 can trigger mitochondrial dysfunction from the nucleus without relocalizing into the cytoplasm. Release of cytochrome c occurs in the absence of overt alteration of the nuclear pores and changes of the nuclear/cytoplasmic barrier. Addition of leptomycin B, an inhibitor of nuclear export, did not interfere with the ability of caspase-2 to trigger cytochrome c release. Only during the late phase of the apoptotic process can caspase-2 relocalize in the cytoplasm, as consequence of an increase in the diffusion limits of the nuclear pores. Taken together these data indicate the existence of a nuclear/mitochondrial apoptotic pathway elicited by caspase-2

    Role of Caspases, Bid, and p53 in the Apoptotic Response Triggered by Histone Deacetylase Inhibitors Trichostatin-A (TSA) and Suberoylanilide Hydroxamic Acid (SAHA)

    Get PDF
    Histone deacetylase activity is potently inhibited by hydroaximc acid derivatives such as suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). These inhibitors specifically induce differentiation/apoptosis of transformed cells in vitro and suppress tumor growth in vivo. Because of its low toxicity, SAHA is currently evaluated in clinical trials for the treatment of cancer. SAHA and TSA induce apoptosis, which is characterized by mitochondrial stress, but so far, the critical elements of this apoptotic program remain poorly defined. To characterize in more detail this apoptotic program, we used human cell lines containing alterations in important elements of apoptotic response such as: p53, Bcl-2, caspase-9, and caspase-3. We demonstrate that caspase-9 is critical for apoptosis induced by SAHA and TSA and that efficient proteolytic activation of caspase-2, caspase-8, and caspase-7 strictly depends on caspase-9. Bcl-2 efficiently antagonizes cytochrome c release and apoptosis in response to both histone deacetylase inhibitors. We provide evidences that translocation into the mitochondria of the Bcl-2 family member Bid depends on caspase-9 and that this translocation is a late event during TSA-induced apoptosis. We also demonstrate that the susceptibility to TSA- and SAHA-induced cell death is regulated by p53

    Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression

    Get PDF
    Forty-two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all-trans retinoic acid (ATRA) sensitivity. Luminal and ER+ (estrogen-receptor-positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA-MB157 and HCC-1599) are highly sensitive to the retinoid. Sensitivity of HCC-1599 cells is confirmed in xenotransplanted mice. Short-term tissue-slice cultures of surgical samples validate the cell-line results and support the concept that a high proportion of Luminal/ER+ carcinomas are ATRA sensitive, while triple-negative (Basal) and HER2-positive tumors tend to be retinoid resistant. Pathway-oriented analysis of the constitutive gene-expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA-sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over-expression sensitizes retinoid-resistant MDA-MB453 cells to ATRA anti-proliferative action. Conversely, silencing of RARα in retinoid-sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA-dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti-metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short-term tissue cultures of Luminal/ER+ and triple-negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid-based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes

    Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ

    No full text
    Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARβ. RARβ is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype

    The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis

    No full text
    Gas2 is a caspase-3 substrate that plays a role in regulating microfilament and cell shape changes during apoptosis. Here we provide evidence that overexpression of Gas2 efficiently increases cell susceptibility to apoptosis following UV irradiation, etoposide and methyl methanesulfonate treatments, and that these effects are dependent on increased p53 stability and transcription activity. To investigate possible pathways linking Gas2 to p53, a yeast two-hybrid screen swas performed, indicating m-calpain as a strong Gas2- interacting protein. Moreover, we demonstrate that Gas2 physically interacts with m-calpain in vivo and that recombinant Gas2 inhibits calpain-dependent processing of p53. Importantly, the Gas2 dominant-negative form (Gas2Δ171–314) that binds calpain but is unable to inhibit its activity abrogates Gas2’s ability to stabilize p53, to enhance p53 transcriptional activity and to induce p53-dependent apoptosis. Finally, we show that Gas2 is able to regulate the levels of p53 independently of Mdm2 status, suggesting that, like calpastatin, it may enhance p53 stability by inhibiting calpain activity

    Caspase-dependent Regulation of Histone Deacetylase 4 Nuclear-Cytoplasmic Shuttling Promotes Apoptosis

    No full text
    Histone deacetylases (HDACs) are important regulators of gene expression as part of transcriptional corepressor complexes. Here, we demonstrate that caspases can repress the activity of the myocyte enhancer factor (MEF)2C transcription factor by regulating HDAC4 processing. Cleavage of HDAC4 occurs at Asp 289 and disjoins the carboxy-terminal fragment, localized into the cytoplasm, from the amino-terminal fragment, which accumulates into the nucleus. In the nucleus, the caspase-generated fragment of HDAC4 is able to trigger cytochrome c release from mitochondria and cell death in a caspase-9–dependent manner. The caspase-cleaved amino-terminal fragment of HDAC4 acts as a strong repressor of the transcription factor MEF2C, independently from the HDAC domain. Removal of amino acids 166–289 from the caspase-cleaved fragment of HDAC4 abrogates its ability to repress MEF2 transcription and to induce cell death. Caspase-2 and caspase-3 cleave HDAC4 in vitro and caspase-3 is critical for HDAC4 cleavage in vivo during UV-induced apoptosis. After UV irradiation, GFP-HDAC4 translocates into the nucleus coincidentally/immediately before the retraction response, but clearly before nuclear fragmentation. Together, our data indicate that caspases could specifically modulate gene repression and apoptosis through the proteolyic processing of HDAC4

    Dephosphorylation and Caspase Processing Generate Distinct Nuclear Pools of Histone Deacetylase 4▿ †

    No full text
    From the nucleus, histone deacetylase 4 (HDAC4) regulates a variety of cellular processes, including growth, differentiation, and survival, by orchestrating transcriptional changes. Extracellular signals control its repressive influence mostly through regulating its nuclear-cytoplasmic shuttling. In particular, specific posttranslational modifications such as phosphorylation and caspase-mediated proteolytic processing operate on HDAC4 to promote its nuclear accumulation or export. To understand the signaling properties of this deacetylase, we investigated its cell death-promoting activity and the transcriptional repression potential of different mutants that accumulate in the nucleus. Here we show that, compared to that of other nuclear forms of HDAC4, a caspase-generated nuclear fragment exhibits a stronger cell death-promoting activity coupled with increased repressive effect on Runx2- or SRF-dependent transcription. However, this mutant displays reduced repressive action on MEF2C-driven transcription. Photobleaching experiments and quantitative analysis of the raw data, based on a two-binding-state compartmental model, demonstrate the existence of two nuclear pools of HDAC4 with different chromatin-binding properties. The caspase-generated fragment is weakly bound to chromatin, whereas an HDAC4 mutant defective in 14-3-3 binding or the wild-type HDAC5 protein forms a more stable complex. The tightly bound species show an impaired ability to induce cell death and repress Runx2- or SRF-dependent transcription less efficiently. We propose that, through specific posttranslation modifications, extracellular signals control two distinct nuclear pools of HDAC4 to differentially dictate cell death and differentiation. These two nuclear pools of HDAC4 are characterized by different repression potentials and divergent dynamics of chromatin interaction

    A DOCK1 Gene-Derived Circular RNA Is Highly Expressed in Luminal Mammary Tumours and Is Involved in the Epithelial Differentiation, Growth, and Motility of Breast Cancer Cells

    No full text
    Circular RNAs are regulatory molecules involved in numerous cellular processes and may be involved in tumour growth and diffusion. Here, we define the expression of 15 selected circular RNAs, which may control the process of epithelial-to-mesenchymal transition, using a panel of 18 breast cancer cell lines recapitulating the heterogeneity of these tumours and consisting of three groups according to the mesenchymal/epithelial phenotype. A circular RNA from the DOCK1 gene (hsa_circ_0020397) shows low/undetectable levels in triple-negative mesenchymal cell lines, while its content is high in epithelial cell lines, independent of estrogen receptor or HER2 positivity. RNA-sequencing experiments performed on the triple-negative/mesenchymal MDA-MB-231 and MDA-MB-157 cell lines engineered to overexpress hsa_circ_0020397 demonstrate that the circRNA influences the expression of 110 common genes. Pathway analysis of these genes indicates that overexpression of the circular RNA differentiates the two mesenchymal cell lines along the epithelial pathway and increases cell-to-cell adhesion. This is accompanied by growth inhibition and a reduction in the random/directional motility of the cell lines. The upregulated AGR2, ENPP1, and PPP1R9A genes as well as the downregulated APOE, AQP3, CD99L2, and IGFBP4 genes show an opposite regulation by hsa_circ_0020397 silencing in luminal CAMA1 cells. The results provide novel insights into the role played by specific circular RNAs in the generation/progression of breast cancer
    corecore