29 research outputs found
Morphological abnormalities in mites of the genera “Zecron” and “Prozecron” (Acari : Gamasina) collected near caves : preliminary results
Eleven mites of the genera "Zercon" C.L. Koch, 1836 and "Prozercon" Sellnick, 1943 with various morphological deviations (changes in chaetotaxy) are described. The mites were collected from the natural environment, near limestone caves in the Kraków-Częstochowa Upland (Wyżyna Krakowsko-Częstochowska) in southern Poland
Oribatid mites (Acari, Oribatida) in selected caves of the Kraków-Wielun Upland (southern Poland)
This paper describes and compares the species composition and community structure of the oribatid mite fauna of 5 caves in the Kraków-Wielun Upland (Wyzyna Krakowsko-Wielunska). We also compare oribatid communities in 3 chosen caves with oribatid communities in the soil and litter (leaves, dead wood, bat guano) in the vicinity of the cave entrances. Three hypotheses were tested: (1) oribatid communities from the soil and litter near the caves differ from the communities inhabiting caves; (2) the composition of oribatid communities depends on cave size; (3) the cave communities strongly depend on microhabitat quality and diversity. We collected 1112 adult oribatids from caves and 838 from the soil and litter near the caves. Oribatid communities in the caves were different from the soil communities. Litter, guano and dead wood were the microhabitats that affected oribatid communities signifcantly. In the other cave microhabitats (soil and mud), oribatids were infrequent. Cave size affected the oribatid community structure
Roztocze drapieżne wybranych jaskiń Wyżyny Krakowsko-Częstochowskiej : analiza wpływu parametrów siedliskowych na zgrupowania roztoczy Gamasina (Arachnida, Acari)
W aktualnym światowym trendzie badań nad bioróżnorodnością, prowadzona jest inwentaryzacja zasobów przyrody na terenach Parków Narodowych i rezerwatów. W tym kontekście duże znaczenie ma poznanie zgrupowań stawonogów glebowych, a w szczególności roztoczy, które są jednym z najbogatszych gatunkowo składników ekosystemów lądowych. Do terenów o szczególnym znaczeniu biologicznym należą jaskinie, które są stosunkowo rzadko badane. Głównym celem pracy było poznanie składu gatunkowego roztoczy Gamasina zasiedlających wybrane jaskinie Jury Krakowsko-Częstochowskiej oraz określenie jaki wpływ na te zgrupowania mają parametry środowiskowe. Niniejsza praca jest jedynym w Polsce tak szerokim i kompleksowym opracowaniem roztoczy podrzędu Gamasina jaskiń. Dlatego może być przydatna specjalistom z dziedziny ekologii i akarologii a, ze względu na wielokierunkową analizę statystyczną, także studentom.1. Ambros M., Stanko M. 1989: Poznámky k faune roztočov (Acari: Mesostigmata) drobnych zemných Cicavcov (Insectivora, Rodentia) z Územia Chránenej Krajinnej Oblasti Východné Karpaty. Ochrana Prírody 10: 490-501.
2. André H. M., Ducarme X., Lebrun P. 2002: Soil biodiversity: myth, reality or conning? Oikos 96: 3-24.
3. André H. M., Ducarme X., Lebrun P. 2004: New ereynetid mites (Acari: Tydeoidea) from karstic areas: True association or sampling bias? Journal of Cave and Karst Studiea, 66, 3: 81-88.
4. Andrzejewski R. 1996: Ekologiczne problemy ochrony różnorodności biologicznej. Zeszyty Naukowe „Człowiek i Środowisko” 15: 71-86.
5. Baggini A., Pavan M. 1955: Studi sugli Scorpioni. Italian Journal of Zoology 22, 2: 329-340.
6. Barczyk G., Madej G. 2015 Comparison of the species composition of Gamasina mite communities (Acari: Mesostigmata) in selected caves of the Kraków-Częstochowa Upland (southern Poland) and their immediate surroundings. Journal of Natural History 49 (27-28): 1673-1688.
7. Barr Jr T. C. 1968: Cave ecology and the evolution in troglobites.W: Dobzhansky T. H., Hecht M. K., Steere W. C. (red.): Evolutionary biology 2. Plenum Press, New York: 35-102.
8. Barr Jr T. C., Holsinger J. R. 1985: Speciation in cave faunas. Annual Review of Ecology 16: 313-317.
9. Bellati J., Austin A. D., Stevens N. B. 2003: Arthropod diversity of guano and non-guano caves at the Naracoorte caves world heritage area, South Australia. Records of the South Australia Museum Monograph Series No.7: 257-265.
10. Błaszak C. 1974: Zerconidae (Acari, Mesostigmata) Polski. Monografie Fauny Polski. Tom.3. Polska Akademia Nauk, Zakład Zoologii Systematyczneji Doświadczalnej, PWN, Warszawa, Kraków: 1-315.
11. Błaszak C. Madej G. 1997: Parasitiformes (=Anactinotrichida), 1. Gamasida (Mesostigmata): Antennophorina, Microgyniina, Sejina, Gmasina. W: Razowski J. (red.). Wykaz zwierząt Polski. Wydawnictwo Instytutu Systematyki i Ewolucjii Zwierząt PAN, Kraków, 4: 190-202.
12. Błędzki A. L. 2007: Metoda porównania bogactwa gatunkowego i różnorodności gatunkowej. Część I, II, Bioskop 01/07, 02/07: 18-22, 20-23.
13. Błoszyk J., Klimczak J., Leśniewska M. 2006: Phoretic relationships between Uropodina (Acari: Mesostigmata) and centipedes (Chilopoda) as an example of evolutionary adaptation of mites to temporary microhabitats. European Journal of Entomology 103: 699-707.
14. Boczek J., Błaszak C. 2005: Roztocze (Acari). Znaczenie w życiu i gospodarce człowieka. Wydawnictwo SGGW, Warszawa, 1-267.
15. Bregetova N. G., 1956: Gamazowyje klešči (Gamasoidea), kratkij oprjedjelitiel’. Izdatjelstvo Akademii Nauk SSSR, Moskwa, Leningrad: 1-246.
16. Buryn R., Brandl R. 1992: Are the morphometrics of chelicerae correlated with diet in mesostigmatid mites (Acari)? Experimental Applied Acarology 14: 67-82.
17. Chao A. 1984: Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265-270.
18. Chao A. 1987: Estimating the population size for capture-recapture data with unequal matchability. Biometrics 43: 783-791.
19. Chao A., Lee S.-M. 1992: Estimating the number of classes via sample coverage. Journal of the America Statistical Association 87: 210-217.
20. Chapman P. 1982: The orgin of troglobites. Proceedings of the University of Bristol Speleological 16, 2: 133-141.
21. Christiansen K. 1962: Proposition pour la classification des animaux cavernicoles. Spelunca Bulletin et Mémoires de la Société de Spéléologie 2: 76-78.
22. Christiansen K. 1965: Behavior and form in the evolution of cave collembola. Evolution 19, 4: 529-537.
23. Coineau Y., Haupt J., Delamare-Deboutteville C., Théron P. 1978: Un remarquable exemple de convergence écologique: l’adaptation de Gordialycus tuzetae (Nematalycidae, Acariens) à la vie dans les interstices des sables fins. Comptes rendus hebdomadaires des séances de l'Académie des sciences. Série D: Sciences naturelles 287: 883-886.
24. Colwell R. K., Futuyama D. J 1971: On the measurement of niche breadth and overlap. Ecology 52: 567-576.
25. Cooreman J. 1959: Notes sur queques Acariens de la faune cavernicole(2me Serie). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie: 35: 1-40.
26. Corel Corporation 2008: COREL PHOTO-PAINT x4, wersja 14.0.0.567.
27. Culver D. C. 1970: Analysis of Simple Cave Communites: niche separation and species packing. Ecology 51, 6: 949-958.
28. Culver D. C. 1971: Analysis of Simple Cave Communites III. Control of Abundance. The American Midland Naturalist 85, 1: 173-187.
29. Culver D. C. 1973: Competition in spatially heterogeneous systems: an analysis of simple cave communities. Ecology 54, 1: 102-110.
30. Culver D. C. 1982: Cave Life: Evolution and Ecology. Cambridge, Massachusetts, Harvard University Press: 1-189.
31. Culver D. C., Christman M. C., Elliott W. R., Hobbs III H. H., Reddell J. R. 2003: The North American obligate cave fauna: regional patterns. Biodiversity and Conservation 12: 441-468.
32. Culver D. C., Deharveng L., Bedos A., Lewis J.J., Madden M., Reddell J. R., Sket B., Trontelj P., White D. P. 2006: The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29: 120-128.
33. Culver D. C., Pipan T. 2009: The Biology of Caves and Other Subterranean Habitats. Oxford Uniwersity Press: 1-256.
34. Culver D. C., Sket B. 2000: Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62, 1: 11-17.
35. Culver D. C., Sket B. 2002: Biological monitoring in caves. Acta Carsologica 31/1, 4: 55-64,
36. Ćurčić B. P. M., Radović, I. 1998: The hypogean fauna in Serbia: from surface to soil to caves (Hipogejska fauna u Srbiji: od površine, do zemljišta do pećina). W: Đurović P. (red.). Speleological atlas of Serbia (Speleološki atlas Srbije). Geografski institut “Jovan Cvijić” SANU, Biološki fakultet Univerziteta u Beogradu. Serbian Academy of Sciences and Arts, Special Issues (Sanu, Posebna izdanja) 52: 59-75.
37. Daohong L. 2007: Correlation between the animal community structure and environmental factors in Jialiang and Boduo caves of Guizhou Province, China. Acta Ecologica Sinica 27, 6: 2167-2176.
38. Demel K. 1918: Fauna jaskiń ojcowskich. Sprawozdania TNW, Wydział Nauk Matematyczno-Przyrodniczych 11: 623-659.
39. Dielmann M. 1991: Zur Taxonomie der Raubmilben (Acari: Gamasina) unter besonderer Berücksichtigung der Gattung Pergamasus Berlese, 1904. Dissertation, Karlsrue: 1-275.
40. Ducarme X., André H. M., Wauthy G., Lebrun P. 2004a: Comparison of endogeic and cave communites: microarthropod density and mite species richness. European Journal of Soil Biology 40: 129-138.
41. Ducarme X., Lebrun P. 2004: Spatial microdistribution of mites and organic matter in soil sand caves. Biology and Fertility of Soils 39: 457-466.
42. Ducarme X., Michel G., Lebrun P. 2003: Mites from Belgian Caves:
an extensive study. Subterranean Biology 1: 13-23.
43. Ducarme X., Wauthy G., André H. M., Lebrun P. 2004b: Survey of mites in caves and deep soil and evolution of mites in these habitats. Canadian Journal of Zoology 82: 841-850.
44. Dufrêne M., Legendre P. 1997: Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.
45. Dylewska M., Błoszyk J. 2006: Phaulodiaspis advena (Trägårdh, 1992) – interesujący roztocz z jaskiń Ojcowskiego Parku Narodowego (Acari: Mesostigmata). Prądnik, Prace Muzeum Szafera 16: 165-168.
46. Dzwonko Z. 2007: Przewodnik do badań fitosocjologicznych. Sorus: 200-250.
47. Elliott W. R. 2004: Protecting Caves and Cave Life. Culver D. C., White W. B. (red.). Encyclopedia of Caves. Elsevier Academic Press: 458-467.
48. Elliott W. R. 2006: Biological Dos and Don’ts for Cave Restoration
and Conservation. W: Werker H. V., Werker J. (red.). Cave Conservation and Restoration, NSS: 33-46.
49. Elliott W. R. 2007: Zoogeography and biodiversity of Missouri caves and karst. Journal of Cave and Karst Studies 69, 1: 135-162.
50. Elliott W. R., City J. 2005: Critical issues in cave biology. National Cave and Karst Management Symposium: 35-39.
51. Emerson J. K., Roark A. M. 2007: Composition of guano produced by frugivorus, sanguivorous and insectivorous bats. Acta Chiropterologica 9, 1: 261-267.
52. Fend’a P., Košel V. 2000: Roztoče (Acarina: Mesostigmata) jaskýň Slovenského Raja. W: Mock A., Kováč L’., Fulín M. (red.). Fauna jaskýň (Cave Fauna): 21-30.
53. Ferreira R. L., Horta L. C. 2001: Natural and human impacts on invertebrate communities in Brazilian caves. Brazilian Journal of Biology 61, 1:7-17.
54. Gerič B., Pipan T., Mulec J. 2004: Diversity of culturable bacteria and meiofauna in the epikarst of Škocjanske jame caves (Slovenia). Acta Carsologica 33/1 (20): 301-309.
55. Gers C. 1998: Diversity of energy fluxes and interactions between arthropod communities: from Soil to Cave. Acta Oecologica 19, 3: 205-213.
56. Giljarov M. C. (red.) 1977: Opriedielitiel’ obitajuščich w počve kleščej Mesostigmata, Wydawnictwo Nauka. Leningrad: 1-719.
57. Giller P. S. 1996: The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation 5: 135-168.
58. Gjelstrup P. 2000: Soil mites and Collembolans on Surtsey, Iceland, 32 years after the eruption. Surtsey Research, 11:43-50.
59. Gliwicz J. 1992: Rożnorodność biologiczna: nowa koncepcja ochrony przyrody. Wiadomości Ekologiczne 38, 4: 211-219.
60. Gotelli N. J., Graves. G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC: 1-368.
61. Górny M., Grüm L. (red.) 1981: Metody stosowane w zoologii gleby. Wydawnictwo Naukowe PWN, Warszawa, 1-483.
62. Graening G. O., Slay M. E., Bitting C. 2006: Cave Fauna of the Buffalo National River. Journal of Cave and Karst Studies 68, 3: 153-163.
63. Gwiazdowicz D. J. 2007: Ascid mites (Acari, Mesostigamat) from selected forest ecosystems and microhabitats in Poland. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego, Poznań: 1-248.
64. Gwiazdowicz D. J., Fabrowski M. 2001: Mites (Acari, Gamasida) of the Ojców National Park. Parki Narodowe i Rezerwaty Przyrody 20, 4: 35-2001.
65. Polonorum – Silvarum Colendarum Ratio et Industria Lignaria 3, 2: 49-55.
66. Hågvar S. 1998: The relevance of the Rio-Convention on biodiversity to conserving the biodiversity of soils. Applied Soil Ecology 9: 1-7.
67. Halliday R. B. 2001: Mesostigmatid mite fauna of Jenolan Caves, New South Wales (Acari: Mesostigmata). Australian Journal of Entomology 40, 4: 299-311.
68. Hammer Ø., Harper D. A. T., Ryan P. D. 2001: PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 1: 1-9.
69. Hill M. O. 1979: TWINSPAN: A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, NY, US.
70. Hirschmann W., Wiśniewski J. 1982a: Weltweite Revision der Gattungen Dendrolaelaps Halbert 1915 und Longoseius Chant 1961 (Parasitiformes). Beschreibung der Untergattungen und Arten, Bestimmungstabellen, Chaetotaxie, Porotaxie. Acarologie, Nürnberg, 29-I: 1-190.
71. Hirschmann W., Wiśniewski J. 1982b: Weltweite Revision der Gattungen Dendrolaelaps Halbert 1915 und Longoseius Chant 1961 (Parasitiformes). Artenverzeichnisse, Krankheiten, Missbildungen, Inseminationsapparate, Abbildungen. Acarologie, Nürnberg, 29-II: 1-48 (94 tabl).
72. Howarth F. G. 1981: Non-relictual troglobites in the tropical Hawaiian caves. Proceedings of the 8th International Congress of Speleology: 1-16.
73. Howarth F. G. 1983: Ecology of cave arthropods. Annual Review of Entomology 28: 365-389.
74. Howarth, F. G. 1986: The tropical cave environment and the evolution
of troglobites. Proceedings of the 9th International Congress of Speleolgy: 153-155.
75. Howarth, F. G., Stone. F. D. 1990: Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pacific Science 44: 207-18.
76. Hyatt K. H. 1980. Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the Britisch Isles. Bulletin of the British Museum (Natural History) 38, 5: 1-378.
77. Ikner L. A., Toomey R. S., Nolan G., Neilson J. W., Pryor B. M., Maier R. M. 2006: Culturable Microbial Diversity and the Impact of Tourism in Kartchner Caverns, Arizona. Microbial Ecology 53, 1: 30-42.
78. James J. M. 1997: Carbon dioxide in the cave atmosphere. Transactions of the British Cave Research Association 4: 417-429.
79. Jawor P. 2010: Ustawka z fobią i odparzeniami. Gazeta Wyborcza Kraków, 26 listopada 2010: 10-11.
80. Jongman R. H. G., ter Braak C. J. F., van Tongeren D. F. R. (red.) 1987: Data analysis in community and landscape ecology. Pudoc, Wageningen: 213-251.
81. Juberthie C., Decu V. 1994: Structure et diversite du domaine souterrain; particularites des habitats et adaptations des especes, W: Juberthie C., Decu V. (red.): Encyclopedia Biospeologica, Tome I. Bucarest, Moulis, France. Societe de Biospeologie: 5-22.
82. Kamczyc J. 2006: Microhabitat preferences of Veigaia mollis Karg, 1971 in the mountain reserve „Szczeliniec Wielki”. Biological Letters 43, 2: 193-195.
83. Karg W. 1993: Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach Raubmilben. Die Tierwelt Deutchlands 59, Fischer, Jena, Germany: 1-523.
84. Karg W., Freier B. 1995: Parasitiforme Raubmilben als Indikatoren für den ökologischen Zustand von Ökosystemen. Mitteilungen aus der Biologischen Bundesanstalt für Land – und Forstwirtschaft Berlin – Dahlem, 308: 1-96.
85. Koehler H., Harder H., Meyerdierks J., Voigts A. 1996: The effect of trampling on the microarthropod fauna of dune sediments. A case study from Jutland, Denmark. W: Jones P. S. i in. (red.). Studies in European Coastal Management. Cardigan, UK: 221-231.
86. Kofler A., Schmölzer K. 2000: Zur Kenntnis phoretischer Milben und iher Tragwirte in Österreich (Acarina: Gamasina, Uropodina). Naturwissenschaftlich-Medizinischer Verein in Innsbruck 87: 133-157.
87. Koilraj A. J., Marimuthu G. 1999: A comparison of eye and body surface between surface and cave-dwelling millipedes. Current Science 77, 3: 339-340.
88. Kojumdżijeva M. N. 1981: Gamazovyje klešči (Gamasodes, Parasitiformes) żukov-navoznikov (Coleoptera, Scarabaeidae). Acta Zoologica Bulgarica. 17: 17-26.
89. Kováč L., Mock A., L’uptáčik P., Višňovská Z., Fend’a P. 2006: Bezstavovce (Evertebrata) Dobšinskej ľadovej jaskyne (Slovenský raj). Výskum, využívaniea ochrana jaskýň 5, zborník referátov, SSJ, Demänovská dolina 2005, Liptovský Mikuláš: 179-186.
90. Kovach W. L. 1985-1999: MVSP PLUS version 3.1. Pentraeth, UK.
91. Kowalski K. 1955: Fauna Jaskiń Tatr polskich. Ochrona Przyrody 23: 283-333.
92. Krištofík J., Mašán P., Šustek Z. 1996: Ectoparasites of bee-eater (Merops apiaster) and arthropods in its nests. Biologia, Bratislava 51/5: 557-570.
93. Lee S.-M., Chao A 1994: Estimating population size via sample coverage for closed capture-recapture models. Biometrics 50, 1: 88-97.
94. Lepš J., Šmilauer P. 1999: Multivariate analysis of Ecological Data. Faculty of Biological Sciences. University of South Bohemia Českié Budějovice: 1-110.
95. Leruth, R. 1939. La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mémoire du Musée royal d'Histoire naturelle de Belgique 87: 396-418.
96. Lindquist E. E. 1975: Associations between mites and other Arthropods in forest floor habitats. Canadian Entomologist 107: 425-437.
97. Lindquist E. E., Krantz G. W., Walter D. E. 2009: Order Mesostigmata.W: Krantz G. W., Walter D. E. (red.) A Manual of Acarology, 3rd Edition. Texas Tech University Press, Lubbock: 124-232.
98. Lundqvist L., Hippan H., Koponen S. 1999: Invertebrates of Scandinavian caves. IX. Acari: Mesostigmata (Gamasina), with a complete list of mites, Acarologia 40, 4, 1999 (2000): 357-365.
99. Łomnicki A. 2006: Wprowadzenie do statystyki dla przyrodników. Wydawnictwo Naukowe PWN, Warszawa: 1-262.
100. Magurran A.E. 2004: Measuring biological diversity. Blackwell Publishing, Oxford: 1-248.
101. Mašán P. 1994: The mesostigmatic mites (Acarina, Mesostigmata) associated with the dung beetles (Coleoptera, Scarabaeidae) in South Slovakia. Biologia, Bratislava 49: 201-205.
102. Mašán P. 2007. A review of the family Pachylaelapidae in Slovakia, with systematic and ecology of European species (Acari: Mesostigmata: Eviphidoidea). Institute of Zoology Slovak Academy of Sciences, Bratislava: 1-247.
103. Mašán P., Krištofík J. 1992: Phoresy of some Arachnids (Acarina and Pseudoscorpionidea) on synanthropic fillies (Diptera) in the South Slovakia, Biologia, Bratislava 47, 2: 87-96.
104. Mašán P., Fend’a P. 2004: Zerconid mites of Slovakia (Acari, Mesostigmata, Zerconide). Institute of Zoology Slovak Academy of Sciences, Bratislava: 1-238.
105. Mašán P., Madej G. (w druku): Description of 2 cave dwelling mites of the genus Veigaia (Acari, Mesostigmata, Veigaiidae) from Belgium: V. hubarti sp.n. and V. leruthi Willmann, 1935. Journal of Natural History.
106. Maschke K. 1936: Höhlenfauna des Glatzer Schneeberges. 5. Die Metazoenfauna der Bergwerke bei Mährisch-Alstadt. Beiträge zur Biologie des Glatzer Schneeberges 2: 175-191.
107. Maślak M., Barczyk G. 2011. Oribatid mites (Acari, Oribatida) on selected caves of the Kraków-Wieluń Upland (souther Poland). Biological Letters 48: 107-116.
108. Matuszkiewicz W. 2001: Przewodnik do oznaczania zbiorowisk Polski. Wydawnictwo Naukowe PWN: 1-537.
109. McGill B. J., Etienne R. S., Gray J. S., Alonso D., Anderson M. J., Benecha H. K., Dornelas M., Enquist B. J., Green J. L., He F., Hurlbert A. H., Magurran A. E., Marquet P. A., Maurer B. A., Ostling A., Soykan C. U., Ugland K. I., White E. P. 2007: Species abundance distributions moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10: 995-1015.
110. Michalik S. 1974: Wyżyna Krakowsko-Częstochowska. Wiedza Powszechna, Warszawa: 1-253.
111. Micherdziński W. 1969. Die Familie Parasitidae Oudemans 1901 (Acarina, Mesostigmata). Zakład Zoologii Systematycznej PAN. Państwowe Wydawnictwo Naukowe, Kraków: 1-689.
112. Microsoft Corporation, 2007: Microsoft OFFICE 2007.
113. Moldovan O. T., Pipan T., Iepure S., Mihevc A., Mulec J. 2007: Biodiversity and ecology of fauna in percolating waters in selected Slovenian and Romanian caves. Acta Carsologica 36/3, 493-501.
114. Moraza M. L. 2007: Species composition, structure and diversity of the soil Mesostigmata mite community in a natural beech forest (Fagus sylvatica) from southern Europe. Graellsia 63, 1: 35-42.
115. Moseley M 2007: Acadian biospeleology: composition and ecology of cave fauna of Nova Scotia and southern New Brunswick. Canada, International Journal of Speleology 36, 1: 1-21.
116. Motočec S. G. (red.) 2002: An overview of the cave and interstitial biota of Croatia. Natura Croatica 11, 1: 1-112.
117. Myślińska E. 2001: Laboratoryjne badania gruntów, Wydawnictwo Naukowe PWN, Warszawa: 1-244.
118. Novak T., Sambol J., Janžekovič F. 2003: Faunal Dynamics in the Železna Jama Cave. Acta Carsologica 33/2, 15: 249-267.
119. Nyka J. 1978: Prace naukowe alpinistów. Taternik 54 (238), 1: 13.
120. Ochman K., Wołoszyn B. 2000: Analiza holoceńskiej fauny nietoperzy (Chiroptera) z Jaskini pod Sokolą Górą. Studia Chiropterologica 1: 57-72.
121. Palacios-Vargas J. G., Gamboa-Vargas J. A. 1997: Recent biospeleological studies in Campeche (Yucatan peninsula, Mexico). Proceedings of the 12th International Congress of Speleology 6: 85-90.
122. Paoletti M. G., Celi M., Cipolat C., Tisat L., Faccio A., Del A. A., Boccelli R. 2009: Cave dwelling invertebrates: possible bioindicators of cave pollution- an Italian case. Contributions To Natural History 12: 1029-1047.
123. Papač V., Kováč L., Mock A., Košel V., Fend’a P. 2006: Terestrické článkonožce (Arthropoda) wybraných jaskýň Silickej Planiny. Výskum, využívaniea ochrana jaskýň 5, zborník referátov, SSJ, Demanovská dolina 2005, Liptovský Mikuláš: 187-199.
124. Pax F., Maschke K. 1935: Die Höhlenfauna des Glatzer Schneeberges. I.
Die rezente Metazoenfauna. Beiträge zur Biologie des Glatzer Schneeberges, Breslau 1: 4-72.
125. Perotti M. A., Braig H. R. 2009: Phoretic mites associated with animal and human decoposition. Experimental and Applied Acarology 49: 85-124.
126. Pianka E. R. 1973: The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53-74.
127. Pielou E. C., 1969: An introduction to mathematical ecology. John Wiley & Sons, New York: 1-294.
128. Pielou E. C. 1975: Ecological diversity. John Wiley & Sons, New York: 1-165.
129. Piernik A. 2008: Metody numeryczne w ekologii na przykładzie pakietu MVSP do analiz roślinności. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń: 1-98.
130. Pipan T., Culver D. C. 200
Evaluation of Soil Biological Quality Index (QBS-ar): Its Sensitivity and Usefulness in the Post-Mining Chronosequence - Preliminary Research
We took 60 samples in the post-mining chronosequence with different stages of ecological succession
(4 sites) in 2005 and 2006. In total, 2,740 specimens of soil microarthropods were extracted and classified
according to the Biological Quality of Soil Index (QBS-ar). The number of taxa of microarthropods and QBSar
values increased with succession. According to the increasing values of QBS-ar, the soils of the study sites
can be ordered along the following sequence: the youngest part of the dump (the two-year-old site) (S I) – the
four-year-old site (S II) – the ten-year-old site (S III) – the twenty-year-old site (S IV) (mean QBS-ar = 40; 94;
120; 140, respectively). The QBS-ar index indicated better soil biological quality in woodland sites. The correlation
between QBS-ar values and time of chronosequence was presented
Antioxidant responses of Triticum aestivum plants to petroleum-derived substances
Winter common wheat (Triticum aestivum L.) plants were cultivated on petroleum products contaminated soils with and
without using biopreparation ZB-01. We determined the impact of soil contamination with petrol, diesel fuel and engine oil
on selected antioxidant enzymes and the levels of antioxidants in the leaves of winter wheat. The impact of petroleum
products on selected morphological characteristics of the plants, levels of nutrients and heavy metals was also assessed.
Winter wheat was relatively resistant to soil contamination with petroleum products, and did not show a significant impact
on the morphological characteristics of the plants. The levels of nutrients and heavy metals in the plants depended on the
type of pollutant and the analyzed component. Biopreparation ZB-01 generally resulted in an increase in calcium levels in
the plants. The winter wheat plants growing in soil contaminated with engine oil were characterized by higher levels of zinc,
lead, manganese and cadmium than the control plants. Biopreparation applied to the soil contaminated with petrol resulted in
a slight increase in the levels of lead and zinc in the plants. The petroleum products affected the activity of antioxidant
enzymes and the levels of antioxidants in the plants. The general markers of soil contaminated with diesel fuel and petrol
were POD activity and proline levels. Use of the ZB-01 biopreparation caused an increase in the levels of proline and -SH
groups and an increase in the levels of carbon and calcium in the plants and had no effect on the morphological
characteristics of plants
Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean
The aim of the study was to determine the effects of various petroleum-derived substances, namely petrol, diesel fuel and spent engine oil, on life history traits and population dynamics of the black bean aphid Aphis fabae Scop. and on growth and chemical composition of its host plant Vicia faba L. Each substance was tested separately, using two concentrations (9 g kg−1 and 18 g kg−1). The experiment was conducted in four replications (four pots with five plants in each pot per treatment). Plants were cultivated in both control and contaminated soils. After six weeks from soil contamination and five weeks from sowing the seeds, observations of the effect of petroleum-derived substances on traits of three successive generations of aphids were conducted. Aphids were inoculated separately on leaves using cylindrical cages hermetically closed on both sides. Contamination of aphid occurred through its host plant. Results showed that all tested substances adversely affected A. fabae life history traits and population dynamics: extension of the prereproductive period, reduction of fecundity and life span, reduction of the population intrinsic growth rate. In broad bean, leaf, roots, and shoot growth was also impaired in most conditions, whereas nutrient and heavy metal content varied according to substances, their concentration, as well as plant part analysed. Results indicate that soil contamination with petroleum-derived substances entails far-reaching changes not only in organisms directly exposed to these pollutants (plants), but also indirectly in herbivores (aphids) and consequently provides information about potential negative effects on further links of the food chain, i.e., for predators and parasitoids
Robinia pseudoacacia and Melandrium album in trace elements biomonitoring and air pollution tolerance index study
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia
pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia.
Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants
could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the abovementioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators
Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites
The purpose of this study was to determine the concentrations of heavy metals (cadmium, iron, manganese, lead and zinc) in current-year, 1-year old and 2-year old needles of Pinus sylvestris L. Trees were from three heavily polluted (immediate vicinity of zinc smelter, iron smelter and power plant) and three relatively clean sites (nature reserve, ecologically clean site and unprotected natural forest community) in southern Poland. Analysis also concerned the antioxidant response and contents of protein, proline, total glutathione, non-protein thiols and activity of guaiacol peroxidase (GPX) in the needles. Generally, in pine needles from the polluted sites, the concentrations of the metals were higher and increased with the age of needles, and in most cases, antioxidant responses also were elevated. The highest levels of Cd, Pb and Zn were found in 2-year old pine needles collected near the polluted zinc smelter (respectively: 6.15, 256.49, 393.5 mg kg −1 ), Fe in 2-year old pine needles in the vicinity of the iron smelter (206.82 mg kg −1 ) and Mn in 2-year old needles at the ecologically clean site (180.32 mg kg −1 ). Positive correlations were found between Fe, Mn and Pb and the content of proteins and NPTs, between Cd and non-protein –SH groups, and between Zn and proline levels. The activity of GPX increased under the influence of Mn, while glutathione levels tended to decrease as Mn levels rose. The data obtained show that the levels of protein and non-protein –SH groups may be useful in biological monitoring, and that these ecophysiological parameters seem to be good evidence of elevated oxidative stress caused by heavy metals
Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L.
The aim of this study was to determine the concentrations of heavy metals (Cd, Pb, Zn, Fe, and Mn) in soil, and their bioavailability and bioaccumulation in Vaccinium myrtillus L. and Vaccinium vitis-idaea L. organs. Analysis also concerned the physiological responses of these plants from three polluted sites (immediate vicinity of a zinc smelter in Miasteczko Śląskie, ArcelorMittal Poland S.A. iron smelter in Dąbrowa Górnicza-Łosień, and Jaworzno III power plant in Jaworzno) and one pseudo-control site (Pazurek nature reserve in Jaroszowiec Olkuski). All of the sites are situated in the southern parts of Poland in the Śląskie or Małopolskie provinces. The contents of proline, non-protein thiols, glutathione, ascorbic acid, and the activity of superoxide dismutase and guaiacol peroxidase in the leaves of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. were measured. In soil, the highest levels of Cd, Pb, and Zn (HNO3 extracted and CaCl2 extracted) were detected at the Miasteczko Śląskie site. At all sites a several times lower concentration of the examined metals was determined in the fraction of soil extracted with CaCl2. Much higher Cd, Pb, Zn and Fe concentrations were found in V. myrtillus and V. vitis-idaea grown at the most polluted site (located near the zinc smelter) in comparison with cleaner areas; definitely higher bioaccumulation of these metals was found in lingonberry organs. Additionally, we observed a large capability of bilberry to accumulate Mn. Antioxidant response to heavy metal stress also differed between V. myrtillus and V. vitis-idaea. In V. myrtillus we found a positive correlation between the level of non-protein thiols and Cd and Zn concentrations, and also between proline and these metals. In V. vitis-idaea leaves an upward trend in ascorbic acid content and superoxide dismutase activity accompanied an increase in Cd, Pb, and Zn concentrations. At the same time, the increased levels of all tested metals in the leaves of V. vitis-idaea were accompanied by a decreased activity of guaiacol peroxidase. In both species increased Mn accumulation caused a decrease in antioxidant response
A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas
The purpose of this study was to explore a possible relationship between the availability of metals in soil (Cd, Fe, Mn, Pb and Zn) and their concentrations in leaves of Vaccinium myrtillus L. as a species which has been reported to be a successful colonist of acid-and-heavy metal-contaminated soil. Analysis also concerned the antioxidant response of plants from three heavily polluted (immediate vicinity of: zinc smelter, iron smelter and power plant) and three relatively clean sites (nature reserve, ecological site and unprotected natural forest community) in southern Poland. The contents of glutathione, non-protein thiols, protein, proline and activity of guaiacol peroxidase in leaves of bilberry were measured. Generally, the concentrations of metals in the HNO 3 and CaCl 2 extracants of the soil from the polluted sites were higher. Moreover, the antioxidant responses were also elevated in bilberries in the polluted sites. Significant positive relationships between Cd, Pb and Zn concentrations in soil and in the plants were found. In the leaves of V. myrtillus from the polluted sites, higher concentrations of Cd, Pb and Zn were noted (In Miasteczko Śla{ogonek}skie respectively 6.26, 157.09 and 207.17 mg kg -1 d.w.). We found a positive correlation between the increase in the NPTs and protein contents as well as the Cd, Pb and Zn concentrations in V. myrtillus. Cd, Pb and Zn also decreased guaiacol peroxidase activity. However, the activity of this enzyme increased under Fe. A decreasing trend in glutathione contents was observed with increasing iron and manganese concentrations in bilberry leaves. Parameters such as protein, non-protein -SH groups and changes in GPX activity seem to be universal, sensitive and correlated well with heavy metal stress