4 research outputs found

    19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship

    No full text
    A family of three discrete organoantimony­(III)-functionalized heteropolyanions[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate­(III) precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing the largest organoantimony-containing polyanion. All three compounds were fully characterized in the solid state via single-crystal X-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis, and their aqueous solution stability was validated by ultraviolet–visible light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity relationship for these polyanions

    Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution

    No full text
    Two tetra-antimony­(III)-bridged, sandwich-type 18-tungsto-2-arsenates­(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in the solid state and in solution. Both polyanions are stable in aqueous physiological medium for at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony­(III) motif in <b>1</b> and <b>2</b>, distinctly different antibacterial activity was observed for both polyanions. The minimum inhibitory concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL) is lower than for any other organoantimony­(III)-containing polyoxometalate reported to date

    Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution

    No full text
    Two tetra-antimony­(III)-bridged, sandwich-type 18-tungsto-2-arsenates­(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in the solid state and in solution. Both polyanions are stable in aqueous physiological medium for at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony­(III) motif in <b>1</b> and <b>2</b>, distinctly different antibacterial activity was observed for both polyanions. The minimum inhibitory concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL) is lower than for any other organoantimony­(III)-containing polyoxometalate reported to date

    Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates

    No full text
    Three discrete organoantimony­(III)-containing heteropolytungstates [(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> (<b>1</b>), [(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-<i>α</i>-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)­Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]<sup>3–</sup> (<b>3</b>) have been synthesized in one-pot reactions in aqueous medium using the appropriate lacunary heteropolyanion precursor and organoantimony­(III) source. Polyanions <b>1</b>–<b>3</b> were isolated as hydrated salts, (NH<sub>4</sub>)<sub>12</sub>[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>1a</b>), Rb<sub>9</sub>Na­[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>2a</b>), and Rb<sub>3</sub>[{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)­Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]·7H<sub>2</sub>O (<b>3a</b>). The compounds <b>1a</b>–<b>3a</b> were fully characterized in the solid state using infrared (IR) spectroscopy, single-crystal XRD, and thermogravimetric and elemental analyses. The stability of <b>1</b>–<b>3</b> in aqueous solution was confirmed by multinuclear NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>183</sup>W) spectroscopy. Preliminary studies on the biological activity of <b>1</b>–<b>3</b> showed that all three compounds might act as potent antimicrobial agents
    corecore