62 research outputs found

    Evolution of asexual and sexual reproduction in the aspergilli

    Get PDF
    Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative ‘asexual’ species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.National Natural Science Foundation of China 31601446National Research Foundation of Korea 2016010945Intelligent Synthetic Biology Center of Global Frontier Projects 2015M3A6A8065838Biotechnology and Biological Sciences Research CouncilGovernment of IraqMinisterio de Economía y Competitividad BIO2015-67148-

    Synthesis report of the IPCC Sixth Assessment Report (AR6), Longer report. IPCC.

    Get PDF
    This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation, based on the peer-reviewed scientific, technical and socio-economic literature since the publication of the IPCC’s Fifth Assessment Report (AR5) in 2014. The assessment is undertaken within the context of the evolving international landscape, in particular, developments in the UN Framework Convention on Climate Change (UNFCCC) process, including the outcomes of the Kyoto Protocol and the adoption of the Paris Agreement. It reflects the increasing diversity of those involved in climate action. This report integrates the main findings of the AR6 Working Group reports1 and the three AR6 Special Reports. It recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development. Building on multiple analytical frameworks, including those from the physical and social sciences, this report identifies opportunities for transformative action which are effective, feasible, just and equitable using concepts of systems transitions and resilient development pathways. Different regional classification schemes are used for physical, social and economic aspects, reflecting the underlying literature. After this introduction, Section 2, ‘Current Status and Trends’, opens with the assessment of observational evidence for our changing climate, historical and current drivers of human-induced climate change, and its impacts. It assesses the current implementation of adaptation and mitigation response options. Section 3, ‘Long-Term Climate and Development Futures’, provides a long-term assessment of climate change to 2100 and beyond in a broad range of socio-economic futures. It considers long-term characteristics, impacts, risks and costs in adaptation and mitigation pathways in the context of sustainable development. Section 4, ‘Near-Term Responses in a Changing Climate’, assesses opportunities for scaling up effective action in the period up to 2040, in the context of climate pledges, and commitments, and the pursuit of sustainable development. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language5 . The scientific findings are drawn from the underlying reports and arise from their Summary for Policymakers (hereafter SPM), Technical Summary (hereafter TS), and underlying chapters and are indicated by {} brackets. Figure 1.1 shows the Synthesis Report Figures Key, a guide to visual icons that are used across multiple figures within this report

    IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.

    Get PDF
    This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge of climate change, its widespread impacts and risks, and climate change mitigation and adaptation. It integrates the main findings of the Sixth Assessment Report (AR6) based on contributions from the three Working Groups1 , and the three Special Reports. The summary for Policymakers (SPM) is structured in three parts: SPM.A Current Status and Trends, SPM.B Future Climate Change, Risks, and Long-Term Responses, and SPM.C Responses in the Near Term.This report recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation, ecosystem health, human well-being and sustainable development, and reflects the increasing diversity of actors involved in climate action. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language

    Breaking bad news of cancer diagnosis – Perception of the cancer patients in a rural community in Malaysia

    No full text
    Context: Breaking of bad news is an important component in the management of cancer patients. Aims: This study aimed to assess the perceptions of breaking bad news of cancer diagnosis. Settings and Design: It was a cross‑sectional study using Breaking Bad News Assessment Schedule (BAS) questionnaire on cancer patients in Serian district. Materials and Methods: Using snowballing sampling method, a total of 134 patients were interviewed face‑to‑face after the consent was obtained from each of the respondents. Statistical Analysis Used: Data was entered and analyzed using SPSS version 19.0. Results: Majority were comfortable with the current method of breaking bad news. The main aspects found to be the areas of concern were the importance of the usage of body language, management of time and identifying patients’ key area of concerns. There were significant difference between sex and “information giving” (P = 0.028) and “general consideration” (P = 0.016) and also between “the age and setting the scene” (P = 0.042). Significant difference was also found between the types of cancer and “the setting of scene” (P = 0.018), “breaking bad news technique” (P = 0.010), “eliciting concerns” (P = 0.003) and “information giving” (P = 0.004). Conclusion: Good and effective communication skill of breaking bad news is vital in the management of cancer patients. As the incidence of new cases of cancer increase every year, breaking of bad news has become a pertinent to the medical professionals’ role. Specific aspects of communication skills based on local characteristics should be more emphasized in the formulation of training for doctors

    Perception of the Cancer Patients on Doctors’ Ability in Breaking Bad News – the Indigenous Adult Cancer Patients’ Perspective in Sarawak, Malaysia

    No full text
    Background and Objectives: Delivering of bad news is an important component of cancer management that can cause long lasting devastating effects for patients and their families if done badly. Materials: This cross-sectional study was conducted among adult cancer patients in indigenous people in a rural community in Sarawak to assess the perceptions of their doctors’ ability in breaking of bad news of their diagnosis. Using snowball sampling method, patients was interviewed face-to-face using The Breaking Bad News Assessment Schedule (BAS). Data was entered and analyzed using SPSS version 19. Results: A total of 61 patients were recruited with majority were female (51.4%), mean age of 52.2 ± 8.0 years. More than half of them suffered from the nasopharynx (52.5%) cancer and 39.3% were in stage 4 of their disease. Mean score for the overall BAS questionnaire was 71.7 ± 14.85 with only 49.2% graded their doctors’ ability on breaking news as “pass” and “outstanding”. The top two questions (reflecting ability) that the respondents perceived as lacking in their doctors were the “use of appropriate body language during interview” (mean= 2.4±1.20), and “management of time available” (mean =2.7 ± 1.05). Conclusion: Structured training and standard protocol should be provided to help doctors to handle breaking of bad news more efficiently, which in return would help the patients to cope better

    Climate change undermines the global functioning of marine food webs

    No full text
    International audienceSea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency and the biomass residence time in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean trophic transfer efficiency in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2,100 under the ‘no effective mitigation’ Representative Concentration Pathway (RCP 8.5), while biomass residence time between trophic level 2 and 4 is projected to decrease from 2.7 to 2.3 year on average. Beyond the global trends, we show that the trophic transfer efficiencies and biomass residence times may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean trophic transfer efficiency and biomass residence time will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change

    Aerobic growth index (AGI): An index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources

    No full text
    Ocean warming and deoxygenation are affecting the physiological performance of marine species by increasing their oxygen demand while reducing oxygen supply. Impacts on organisms (e.g., growth and reproduction) can eventually affect entire populations, altering macroecological dynamics and shifting species’ distribution ranges. To quantify the effect of warming and deoxygenation on marine organisms, Penn et al. (2018) and Deutsch et al. (2020) developed two metabolic indices that integrate physiological, biogeographic and climatic data. Here, we develop an alternative index, referred to as Aerobic Growth Index (AGI) based on an approach that integrates the von Bertalanffy growth and metabolic theory. We compare the results derived from the application of AGI with those of the two previously published metabolic indices for six species: Atlantic blue crab (Callinectes sapidus), sharpsnout seabream (Diplodus puntazzo), Atlantic cod (Gadus morhua), Australian spiny lobster (Panulirus cygnus), red drum (Sciaenops ocellatus) and common cuttlefish (Sepia officinalis). The baseline (1971–2000) habitat suitability values of AGI are significantly and positively correlated with both metabolic indices (R2 ≄ 0.92). All three indices also show similar spatial patterns and magnitudes of viable habitat loss by the end of the 21st century (2071–2100) relative to baseline conditions under a high greenhouse gas trajectory (Representative Concentration Pathway 8.5). Our results support the applicability and use of AGI to better understand the impacts of warming and deoxygenation on global marine fishery resources. Given the uncertainties surrounding mechanisms linking temperature, oxygen and biogeography, there is a need for different indicators to account for these uncertainties in climate change projections
    • 

    corecore