12,388 research outputs found
Classical to quantum correspondence in dissipative directed transport
We compare the quantum and classical properties of the (Quantum) Isoperiodic
Stable Structures -- (Q)ISSs -- which organize the parameter space of a
paradigmatic dissipative ratchet model, i.e. the dissipative modified kicked
rotator. We study the spectral behavior of the corresponding classical
Perron-Frobenius operators with thermal noise and the quantum superoperators
without it for small values. We find a remarkable similarity
between the classical and quantum spectra. This finding significantly extends
previous results -- obtained for the mean currents and asymptotic distributions
only -- and on the other hand unveils a classical to quantum correspondence
mechanism where the classical noise is qualitatively different from the quantum
one. This is crucial not only for simple attractors but also for chaotic ones,
where just analyzing the asymptotic distribution reveals insufficient.
Moreover, we provide with a detailed characterization of relevant eigenvectors
by means of the corresponding Weyl-Wigner distributions, in order to better
identify similarities and differences. Finally, this model being generic, it
allows us to conjecture that this classical to quantum correspondence mechanism
is a universal feature of dissipative systems.Comment: 7 pages, 6 figure
Cooperativity and Stability in a Langevin Model of Protein Folding
We present two simplified models of protein dynamics based on Langevin's
equation of motion in a viscous medium. We explore the effect of the potential
energy function's symmetry on the kinetics and thermodynamics of simulated
folding. We find that an isotropic potential energy function produces, at best,
a modest degree of cooperativity. In contrast, a suitable anisotropic potential
energy function delivers strong cooperativity.Comment: 45 pages, 16 figures, 2 tables. LaTeX. Submitted to the Journal of
Chemical Physic
Ribonucleoparticle-independent transport of proteins into mammalian microsomes
There are at least two different mechanisms for the transport of secretory proteins into the mammalian endoplasmic reticulum. Both mechanisms depend on the presence of a signal peptide on the respective precursor protein and involve a signal peptide receptor on the cis-side and signal peptidase on the trans-side of the membrane. Furthermore, both mechanisms involve a membrane component with a cytoplasmically exposed sulfhydryl. The decisive feature of the precursor protein with respect to which of the two mechanisms is used is the chain length of the polypeptide. The critical size seems to be around 70 amino acid residues (including the signal peptide). The one mechanism is used by precursor proteins larger than about 70 amino acid residues and involves two cytosolic ribonucleoparticles and their receptors on the microsomal surface. The other one is used by small precursor proteins and relies on the mature part within the precursor molecule and a cytosolic ATPase
Deep Observations of Lyman Break Galaxies
We summarise the main results of recent work on the Lyman break galaxy
population which takes advantage of newly commissioned instrumentation on the
VLT and Keck telescopes to push the detection of these objects to new
wavelengths and more sensitive limits. We focus in particular on near-infrared
observations targeted at detecting emission lines of [O II], [O III], and
H-beta and on the first tentative detection of Lyman continuum emission from
star forming galaxies at z = 3.Comment: 9 pages, LaTeX, 6 Postscript Figures. To appear in the Proceedings of
the ESO Symposium: Deep Fields, ed. S. Cristiani (Berlin: Springer
Gluelump Spectrum in the Bag Model
We explore the ordering of the lowest levels in a simple bag model of the
``gluelump'' of Michael and also discuss, again within the context of the bag
model, the related problem of hybrid potentials in the limit of very small
spacing between quark and anti-quark sources.Comment: 10 page
The role of angular momentum in the construction of electromagnetic multipolar fields
Multipolar solutions of Maxwell's equations are used in many practical
applications and are essential for the understanding of light-matter
interactions at the fundamental level. Unlike the set of plane wave solutions
of electromagnetic fields, the multipolar solutions do not share a standard
derivation or notation. As a result, expressions originating from different
derivations can be difficult to compare. Some of the derivations of the
multipolar solutions do not explicitly show their relation to the angular
momentum operators, thus hiding important properties of these solutions. In
this article, the relation between two of the most common derivations of this
set of solutions is explicitly shown and their relation to the angular momentum
operators is exposed.Comment: 13 pages, 2 figure
A New Test of the Einstein Equivalence Principle and the Isotropy of Space
Recent research has established that nonsymmetric gravitation theories like
Moffat's NGT predict that a gravitational field singles out an orthogonal pair
of polarization states of light that propagate with different phase velocities.
We show that a much wider class of nonmetric theories encompassed by the formalism predict such violations of the Einstein equivalence principle.
This gravity-induced birefringence of space implies that propagation through a
gravitational field can alter the polarization of light. We use data from
polarization measurements of extragalactic sources to constrain birefringence
induced by the field of the Galaxy. Our new constraint is times sharper
than previous ones.Comment: 21 pages, Latex, 3 Postscript figure
- …