48 research outputs found

    Stanniocalcin-1 Regulates Extracellular ATP-Induced Calcium Waves in Human Epithelial Cancer Cells by Stimulating ATP Release from Bystander Cells

    Get PDF
    Background: The epithelial cell response to stress involves the transmission of signals between contiguous cells that can be visualized as a calcium wave. In some cell types, this wave is dependent on the release of extracellular trinucleotides from injured cells. In particular, extracellular ATP has been reported to be critical for the epithelial cell response to stress and has recently been shown to be upregulated in tumors in vivo. Methodology/Principal Findings: Here, we identify stanniocalcin-1 (STC1), a secreted pleiotrophic protein, as a critical mediator of calcium wave propagation in monolayers of pulmonary (A549) and prostate (PC3) epithelial cells. Addition of STC1 enhanced and blocking STC1 decreased the distance traveled by an extracellular ATP-dependent calcium wave. The same effects were observed when calcium was stimulated by the addition of exogenous ATP. We uncover a positive feedback loop in which STC1 promotes the release of ATP from cells in vitro and in vivo. Conclusions/Significance: The results indicated that STC1 plays an important role in the early response to mechanical injury by epithelial cells by modulating signaling of extracellular ATP. This is the first report to describe STC1 as a modulator o

    Beclin-1 Expression is Retained in High-Grade Serous Ovarian Cancer yet is Not Essential for Autophagy Induction In Vitro

    Get PDF
    BACKGROUND: Autophagy is a conserved cellular self-digestion mechanism that can either suppress or promote cancer in a context-dependent manner. In ovarian cancer, prevalent mono-allelic deletion of BECN1 (a canonical autophagy-inducer) suggests that autophagy is impaired to promote carcinogenesis and that Beclin-1 is a haploinsufficient tumor suppressor. Nonetheless, autophagy is known to be readily inducible in ovarian cancer cells. We sought to clarify whether Beclin-1 expression is in fact disrupted in ovarian cancer and whether this impacts autophagy regulation. METHODS: BECN1 expression levels were assessed using The Cancer Genome Atlas (TCGA) datasets from 398 ovarian high-grade serous cystadenocarcinomas (HGSC) and protein immunoblot data from HGSC samples obtained at our institution. Knockdown of BECN1 and other autophagy-related gene expression was achieved using siRNA in established human ovarian cancer cell lines (CaOV3, OVCAR8, SKOV3, and HeyA8) and a novel early-passage, ascites-derived cell line (iOvCa147-E2). LC3 immunoblot, autophagic flux assays, transmission electron microscopy and fluorescence microscopy were used to assess autophagy. RESULTS: We observed prevalent mono-allelic BECN1 gene deletion (76 %) in TCGA tumors, yet demonstrate for the first time that Beclin-1 protein expression remains relatively unaltered in these and additional samples generated at our institution. Surprisingly, efficient siRNA-mediated Beclin-1 knockdown did not attenuate autophagy induction, whereas knockdown of other autophagy-related genes blocked the process. Beclin-1 knockdown instead decreased cell viability without inducing apoptosis. CONCLUSIONS: Taken together, these data demonstrate that despite its sustained expression, Beclin-1 is dispensable for autophagy induction in ovarian tumor cells in vitro, yet may be retained to promote cell viability by a mechanism independent of autophagy or apoptosis regulation. Overall, this work makes novel observations about tumor expression of Beclin-1 and challenges the accepted understanding of its role in regulating autophagy in ovarian cancer

    Stanniocalcin 2 alters PERK signalling and reduces cellular injury during cerulein induced pancreatitis in mice

    Get PDF
    BACKGROUND: Stanniocalcin 2 (STC2) is a secreted protein activated by (PKR)-like Endoplasmic Reticulum Kinase (PERK) signalling under conditions of ER stress in vitro. Over-expression of STC2 in mice leads to a growth-restricted phenotype; however, the physiological function for STC2 has remained elusive. Given the relationship of STC2 to PERK signalling, the objective of this study was to examine the role of STC2 in PERK signalling in vivo. RESULTS: Since PERK signalling has both physiological and pathological roles in the pancreas, STC2 expression was assessed in mouse pancreata before and after induction of injury using a cerulein-induced pancreatitis (CIP) model. Increased Stc2 expression was identified within four hours of initiating pancreatic injury and correlated to increased activation of PERK signalling. To determine the effect of STC2 over-expression on PERK, mice systemically expressing human STC2 (STC2Tg) were examined. STC2Tg pancreatic tissue exhibited normal pancreatic morphology, but altered activation of PERK signalling, including increases in Activating Transcription Factor (ATF) 4 accumulation and autophagy. Upon induction of pancreatic injury, STC2Tg mice exhibited limited increases in circulating amylase levels and increased maintenance of cellular junctions. CONCLUSIONS: This study links STC2 to the pathological activation of PERK in vivo, and suggests involvement of STC2 in responding to pancreatic acinar cell injury

    TGFβ signaling regulates Epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids

    Get PDF
    Epithelial-mesenchymal transition (EMT) serves as a key mechanism driving tumor cell migration, invasion, and metastasis in many carcinomas. Transforming growth factor-beta (TGFβ) signaling is implicated in several steps during cancer pathogenesis and acts as a classical inducer of EMT. Since epithelial ovarian cancer (EOC) cells have the potential to switch between epithelial and mesenchymal states during metastasis, we predicted that modulation of TGFβ signaling would significantly impact EMT and the malignant potential of EOC spheroid cells. Ovarian cancer patient ascites-derived cells naturally underwent an EMT response when aggregating into spheroids, and this was reversed upon spheroid re-attachment to a substratum. CDH1/E-cadherin expression was markedly reduced in spheroids compared with adherent cells, in concert with an up-regulation of several transcriptional repressors, i.e., SNAI1/Snail, TWIST1/2, and ZEB2. Treatment of EOC spheroids with the TGFβ type I receptor inhibitor, SB-431542, potently blocked the endogenous activation of EMT in spheroids. Furthermore, treatment of spheroids with SB-431542 upon re-attachment enhanced the epithelial phenotype of dispersing cells and significantly decreased cell motility and Transwell migration. Spheroid formation was significantly compromised by exposure to SB-431542 that correlated with a reduction in cell viability particularly in combination with carboplatin treatment. Thus, our findings are the first to demonstrate that intact TGFb signaling is required to control EMT in EOC ascites-derived cell spheroids, and it promotes the malignant characteristics of these structures. As such, we show the therapeutic potential for targeted inhibition of this pathway in ovarian cancer patients with late-stage disease

    Loss of LKB1-NUAK1 signalling enhances NF-κB activity in a spheroid model of high-grade serous ovarian cancer

    Get PDF
    High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy often diagnosed at an advanced stage. Although most HGSOC patients respond initially to debulking surgery combined with cytotoxic chemotherapy, many ultimately relapse with platinum-resistant disease. Thus, improving outcomes requires new ways of limiting metastasis and eradicating residual disease. We identified previously that Liver kinase B1 (LKB1) and its substrate NUAK1 are implicated in EOC spheroid cell viability and are required for efficient metastasis in orthotopic mouse models. Here, we sought to identify additional signalling pathways altered in EOC cells due to LKB1 or NUAK1 loss-of-function. Transcriptome analysis revealed that inflammatory signalling mediated by NF-κB transcription factors is hyperactive due to LKB1-NUAK1 loss in HGSOC cells and spheroids. Upregulated NF-κB signalling due to NUAK1 loss suppresses reactive oxygen species (ROS) production and sustains cell survival in spheroids. NF-κB signalling is also activated in HGSOC precursor fallopian tube secretory epithelial cell spheroids, and is further enhanced by NUAK1 loss. Finally, immunohistochemical analysis of OVCAR8 xenograft tumors lacking NUAK1 displayed increased RelB expression and nuclear staining. Our results support the idea that NUAK1 and NF-κB signalling pathways together regulate ROS and inflammatory signalling, supporting cell survival during each step of HGSOC pathogenesis. We propose that their combined inhibition may be efficacious as a novel therapeutic strategy for advanced HGSOC

    Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential

    Get PDF
    Background: Epithelial ovarian cancer exhibits extensive interpatient and intratumoral heterogeneity, which can hinder successful treatment strategies. Herein, we investigated the efficacy of an emerging oncolytic, Maraba virus (MRBV), in an in vitro model of ovarian tumour heterogeneity. Methods: Four ovarian high-grade serous cancer (HGSC) cell lines were isolated and established from a single patient at four points during disease progression. Limiting-dilution subcloning generated seven additional subclone lines to assess intratumoral heterogeneity. MRBV entry and oncolytic efficacy were assessed among all 11 cell lines. Low-density receptor (LDLR) expression, conditioned media treatments and co-cultures were performed to determine factors impacting MRBV oncolysis. Results: Temporal and intratumoral heterogeneity identified two subpopulations of cells: one that was highly sensitive to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-mediated oncolysis. We explored both intracellular and extracellular mechanisms influencing sensitivity to MRBV and identified that LDLR can partially mediate MRBV infection. LDLR expression, however, was not the singular determinant of sensitivity to MRBV among the HGSC cell lines and subclones. We verified that there were no apparent extracellular factors, such as type I interferon responses, contributing to MRBV resistance. However, direct cell-cell contact by co-culture of MRBV-resistant subclones with sensitive cells restored virus infection and oncolytic killing of mixed population. Conclusions: Our data is the first to demonstrate differential efficacy of an oncolytic virus in the context of both spatial and temporal heterogeneity of HGSC cells and to evaluate whether it will constitute a barrier to effective viral oncolytic therapy

    Evidence for Differential Viral Oncolytic Efficacy in an In Vitro Model of Epithelial Ovarian Cancer Metastasis

    Get PDF
    Epithelial ovarian cancer is unique among most carcinomas in that metastasis occurs by direct dissemination of malignant cells traversing throughout the intraperitoneal fluid. Accordingly, we test new therapeutic strategies using an in vitro three-dimensional spheroid suspension culture model that mimics key steps of this metastatic process. In the present study, we sought to uncover the differential oncolytic efficacy among three different viruses—Myxoma virus, double-deleted vaccinia virus, and Maraba virus—using three ovarian cancer cell lines in our metastasis model system. Herein, we demonstrate that Maraba virus effectively infects, replicates, and kills epithelial ovarian cancer (EOC) cells in proliferating adherent cells and with slightly slower kinetics in tumor spheroids. Myxoma virus and vaccinia viruses infect and kill adherent cells to a much lesser extent than Maraba virus, and their oncolytic potential is almost completely attenuated in spheroids. Myxoma virus and vaccinia are able to infect and spread throughout spheroids, but are blocked in the final stages of the lytic cycle, and oncolytic-mediated cell killing is reactivated upon spheroid reattachment. Alternatively, Maraba virus has a remarkably reduced ability to initially enter spheroid cells, yet rapidly infects and spreads throughout spheroids generating significant cell killing effects. We show that low-density lipoprotein receptor expression in ovarian cancer spheroids is reduced and this controls efficient Maraba virus binding and entry into infected cells. Taken together, these results are the first to implicate the potential impact of differential viral oncolytic properties at key steps of ovarian cancer metastasis

    Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids

    Get PDF
    Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5′-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor

    Combination of AKT inhibition with autophagy blockade effectively reduces ascites-derived ovarian cancer cell viability

    Get PDF
    Recent genomics analysis of the high-grade serous subtype of epithelial ovarian cancer (EOC) show aberrations in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway that result in upregulated signaling activity. Thus, the PI3K/AKT pathway represents a potential therapeutic target for aggressive high-grade EOC. We previously demonstrated that treatment of malignant ascites-derived primary human EOC cells and ovarian cancer cell lines with the allosteric AKT inhibitor Akti-1/2 induces a dormancy-like cytostatic response but does not reduce cell viability. In this report, we show that allosteric AKT inhibition in these cells induces cytoprotective autophagy. Inhibition of autophagy using chloroquine (CQ) alone or in combination with Akti-1/2 leads to a significant decrease in viable cell number. In fact, Akti-1/2 sensitizes EOC cells to CQ-induced cell death by exhibiting markedly reduced EC50 values in combination-treated cells compared with CQ alone. In addition, we evaluated the effects of the novel specific and potent autophagy inhibitor-1 (Spautin-1) and demonstrate that Spautin-1 inhibits autophagy in a Beclin-1-independent manner in primary EOC cells and cell lines. Multicellular EOC spheroids are highly sensitive to Akti-1/2 and CQ/Spautin-1 cotreatments, but resistant to each agent alone. Indeed, combination index analysis revealed strong synergy between Akti-1/2 and Spautin-1 when both agents were used to affect cell viability; Akti-1/2 and CQ cotreatment also displayed synergy in most samples. Taken together, we propose that combination AKT inhibition and autophagy blockade would prove efficacious to reduce residual EOC cells for supplying ovarian cancer recurrence. © The Author 2014. Published by Oxford University Press. All rights reserved

    Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target 11 Medical and Health Sciences 1112 Oncology and Carcinogenesis

    Get PDF
    Background: Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods: We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results: Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions: KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC
    corecore