411 research outputs found

    Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia

    Get PDF
    Background: Intestinal derived endotoxin and the subsequent endotoxemia can be considered major predisposing factors for diseases such as atherosclerosis, sepsis, obesity and diabetes. Dietary fat has been shown to increase postprandial endotoxemia. Therefore, the aim of this study was to assess the effects of different dietary oils on intestinal endotoxin transport and postprandial endotoxemia using swine as a model. We hypothesized that oils rich in saturated fatty acids (SFA) would augment, while oils rich in n-3 polyunsaturated fatty acids (PUFA) would attenuate intestinal endotoxin transport and circulating concentrations. Methods: Postprandial endotoxemia was measured in twenty four pigs following a porridge meal made with either water (Control), fish oil (FO), vegetable oil (VO) or coconut oil (CO). Blood was collected at 0, 1, 2, 3 and 5 hours postprandial and measured for endotoxin. Furthermore, ex vivo ileum endotoxin transport was assessed using modified Ussing chambers and intestines were treated with either no oil or 12.5% (v/v) VO, FO, cod liver oil (CLO), CO or olive oil (OO). Ex vivo mucosal to serosal endotoxin transport permeability (Papp) was then measured by the addition of fluorescent labeled-lipopolysaccharide. Results: Postprandial serum endotoxin concentrations were increased after a meal rich in saturated fatty acids and decreased with higher n-3 PUFA intake. Compared to the no oil control, fish oil and CLO which are rich in n-3 fatty acids reduced ex vivo endotoxin Papp by 50% (P \u3c 0.05). Contrarily, saturated fatty acids increased the Papp by 60% (P = 0.008). Olive and vegetable oils did not alter intestinal endotoxin Papp. Conclusion: Overall, these results indicate that saturated and n-3 PUFA differentially regulate intestinal epithelial endotoxin transport. This may be associated with fatty acid regulation of intestinal membrane lipid raft mediated permeability

    Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study

    Get PDF
    Background: High-fat diets may contribute to metabolic disease via postprandial changes in serum endotoxin and inflammation. It is unclear how dietary fat composition may alter these parameters. We hypothesized that a meal rich in n-3 (ω3) fatty acids would reduce endotoxemia and associated inflammation but a saturated or n-6 (ω6) fatty acid-rich meal would increase postprandial serum endotoxin concentrations and systemic inflammation in healthy adults. Methods: Healthy adults (n = 20; mean age 25 ± 3.2 S.D. years) were enrolled in this single-blind, randomized, cross-over study. Participants were randomized to treatment and reported to the laboratory, after an overnight fast, on four occasions separated by at least one week. Participants were blinded to treatment meal and consumed one of four isoenergetic meals that provided: 1) 20 % fat (control; olive oil) or 35 % fat provided from 2) n-3 (ω3) (DHA = 500 mg; fish oil); 3) n-6 (ω6) (7.4 g; grapeseed oil) or 4) saturated fat (16 g; coconut oil). Baseline and postprandial blood samples were collected. Primary outcome was defined as the effect of treatment meal on postprandial endotoxemia. Serum was analyzed for metabolites, inflammatory markers, and endotoxin. Data from all 20 participants were analyzed using repeated-measures ANCOVA. Results: Participant serum endotoxin concentration was increased during the postprandial period after the consumption of the saturated fat meal but decreased after the n-3 meal (p  0.05). There was no treatment meal effect on participant postprandial serum biomarkers of inflammation. Postprandial serum triacylglycerols were significantly elevated following the n-6 meal compared to the n-3 meal. Non-esterified fatty acids were significantly increased after consumption of the saturated fat meal compared to other treatment meals. Conclusions: Meal fatty acid composition modulates postprandial serum endotoxin concentration in healthy adults. However, postprandial endotoxin was not associated with systemic inflammation in vivo. Trial registration: This study was retrospectively registered at clinicaltrials.gov as NCT02521779 on July 28, 2015

    Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs 1

    Get PDF
    Acute heat stress (HS) and heat stroke can be detrimental to the health, well-being, and performance of mammals such as swine. Therefore, our objective was to chronologically characterize how a growing pig perceives and initially copes with a severe heat load. Crossbred gilts (n=32; 63.8±2.9 kg) were subjected to HS conditions (37°C and 40% humidity) with ad libitum intake for 0, 2, 4, or 6 h (n=8/time point). Rectal temperature (Tr), respiration rates (RR), and feed intake were determined every 2 h. Pigs were euthanized at each time point and fresh ileum and colon samples were mounted into modified Ussing chambers to assess ex vivo intestinal integrity and function. Transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran (FD4) permeability were assessed. As expected, Tr increased linearly over time (P\u3c0.001) with the highest temperature observed at 6 h of HS. Compared to the 0-h thermal-neutral (TN) pigs, RR increased (230%; P\u3c0.001) in the first 2 h and remained elevated over the 6 h of HS (P\u3c0.05). Feed intake was dramatically reduced due to HS and this corresponded with significant changes in plasma glucose, ghrelin, and glucose-dependent insulinotropic peptide (P\u3c0.050). At as early as 2 h of HS, ileum TER linearly decreased (P\u3c0.01), while FD4 linearly increased with time (P\u3c0.05). Colon TER and FD4 changed due to HS in quadratic responses over time (P=0.050) similar to the ileum but were less pronounced. In response to HS, ileum and colon heat shock protein (HSP) 70 mRNA and protein abundance increased linearly over time (P\u3c0.050). Altogether, these data indicated that a short duration of HS (2-6 h) compromised feed intake and intestinal integrity in growing pigs

    Improved nutrient digestibility and retention partially explains feed efficiency gains in pigs selected for low residual feed intake

    Get PDF
    Residual feed intake (RFI) is a unique measure of feed efficiency (FE) and an alternative to traditional measures. The RFI is defined as the difference between the actual feed intake of a pig and its expected feed intake based on a given amount of growth and backfat. Therefore, selecting pigs with a low RFI (LRFI) results in a more feed-efficient animal for a given rate of growth. Our objective was to determine the extent to which apparent total tract digestibility of nutrients and energy use and retention may explain FE differences between pigs divergently selected for LRFI or high RFI (HRFI). After 7 generations of selection, 12 HRFI and 12 LRFI pigs (62 ± 3 kg BW) were randomly assigned to metabolism crates. Pigs had free access to a standard diet based on corn (Zea mays) and soybean (Glycine max) meal containing 0.4% TiO2, an exogenous digestibility marker. After a 7-d acclimation, total urine and feces were collected for 72 h. Nutrient and energy digestibility, P digestibility, and N balance were then measured and calculated to determine differences between the RFI lines. As expected, ADFI was lower (2.0 vs. 2.6 kg; P \u3c 0.01), ADG did not differ, and FE was higher in the LRFI (P \u3c 0.001) compared to the HRFI pigs. The digestibility values for DM (87.3 vs. 85.9%), N (88.3 vs. 86.1%), and GE (86.9 vs. 85.4%) were higher (P ≤ 0.003) in the LRFI vs. HRFI pigs, respectively. The DE (16.59 vs. 16.32 MJ/kg DM) and ME (15.98 vs. 15.72 MJ/kg DM) values were also greater (P \u3c 0.001) in LRFI pigs. When correcting for ADFI, P digestibility did not differ between the lines. However, the LRFI pigs tended to have improved N retention (P = 0.08) compared to HRFI pigs (36.9 vs. 32.1 g/d). In conclusion, the higher energy and nutrient digestibility, use, and retention may partially explain the superior FE seen in pigs selected for LRFI

    Effect of immune system stimulation and divergent selection for residual feed intake on digestive capacity of the small intestine in growing pigs

    Get PDF
    Residual feed intake (RFI) is a measure of feed efficiency that reflects differences in the efficiency of the use of feed for maintenance and growth. The consequences of genetic selection for RFI on intestinal nutrient digestion capacity, particularly during immune system stimulation (ISS), are poorly documented. Our objective was to evaluate the impact of ISS and genetic selection for RFI on apparent ileal digestibility (AID) of nutrients, and intestinal nutrient transport and barrier function

    Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake

    Get PDF
    Microbes and microbial components potentially impact the performance of pigs through immune stimulation and altered metabolism. These immune modulating factors can include endotoxin from gram negative bacterial outer membrane component, commonly referred to as lipopolysaccharide (LPS). In this study, our objective was to examine the relationship between intestinal barrier integrity, endotoxin and inflammation with feed efficiency (FE), using pig lines divergently selected for residual feed intake (RFI) as a model. Twelve gilts (62 ± 3 kg BW) from the low RFI (LRFI, more efficient) and 12 from the high RFI (HRFI, less efficient) were used. Individual performance data was recorded for 5 wk. At the end of the experimental period, ADFI of LRFI pigs was less (P \u3c 0.001), ADG not different between the 2 lines (P = 0.72) but the G:F of LRFI pigs was greater than for HRFI pigs (P = 0.019). Serum endotoxin concentration (P \u3c 0.01) and the acute phase protein haptoglobin (P \u3c 0.05) were greater in HRFI pigs. Transepithelial resistance of the ileum, transport of fluorescein isothiocyanate labeled-Dextran and-LPS in ileum and colon, as well as tight junction protein mRNA expression in ileum, did not differ between the lines, indicating the 2 lines did not differ in transport characteristics at the intestinal level. Ileum inflammatory markers, myeloperoxidase (P \u3c 0.05) and IL-8 (P \u3c 0.10), were found to be greater in HRFI pigs. Alkaline phosphatase (ALP) activity was significantly increased in the LRFI pigs in ileum and liver tissues and negatively correlated with blood endotoxin (P \u3c 0.05). Lysozyme activity in the liver was not different between the lines; however, the LRFI pigs had a twofold greater lysozyme activity in ileum (P \u3c 0.05). Despite the difference in their activity, ALP or lysozyme mRNA expression was not different between the lines in either tissue. Decreased endotoxin and inflammatory markers and the enhanced activities of antimicrobial enzymes in the LRFI line may not fully explain the difference in the FE between the lines, but they have the potential to prevent the growth potential in HRFI pigs. Further studies are needed to identify the other mechanisms that may contribute to the greater endotoxin and acute phase proteins in the HRFI pigs and the greater FE in the LRFI pigs

    Effects of selection for decreased residual feed intake on composition and quality of fresh pork

    Get PDF
    The objectives of this study were to determine the extent to which selection for decreased residual feed intake (RFI) affects pork composition and quality. Pigs from the fifth generation of selection for decreased RFI (select) and a randomly selected line (control) were utilized. Two experiments were conducted. In Exp. 1, barrows (22.6 ± 3.9 kg) from select and control lines were paired based on age and BW. The test was conducted in 8 replicates of pairs for the test period of 6 wk. Calpastatin activity and myosin isoforms profile were determined on samples from the LM. Control barrows were heavier (59.1 vs. 55.0 kg; P \u3c 0.01) at the end of the test period. Calpastatin activity was greater (P \u3c 0.01) in LM of select barrows than control barrows. In Exp. 2, composition and quality of gilts (114 kg) from control and select lines were determined. The model included fixed effects of line, slaughter date, melanocortin-4 receptor (MC4R) genotype, barn group, line × slaughter date, genotype × line interactions, a covariate of off-test BW, and sire, pen, and litter fitted as random effects. The select line (n = 80) had 0.043 kg less (P \u3c 0.05) RFI per day than the control line (n = 89). Loin quality and composition were determined at 2 d postmortem. Desmin degradation was measured at 2 and 7 d postmortem. Purge, cook loss, sensory traits, and star probe texture were measured at 7 to 10 d postmortem on cooked chops. Residual correlations between RFI and composition and quality traits were calculated. Compared with the control line, carcasses from the select line tended to have less (P = 0.09) backfat, greater (P \u3c 0.05) loin depth, and greater (P \u3c 0.05) fat free lean. Loin chops from the select line had less (P\u3c 0.01) intramuscular lipid content than loin chops from control line. Significant residual correlations between RFI and both tenderness (r = 0.24, P \u3c 0.01) and star probe (r = −0.26, P \u3c 0.01) were identified. Selection for decreased RFI has the potential to improve carcass composition with few effects on pH and water-holding capacity. However, decreased RFI could negatively affect tenderness and texture because of decreased lipid content and decreased postmortem protein degradation

    Liver and skeletal muscle mitochondria proteomes are altered in pigs divergently selected for residual feed intake

    Get PDF
    Animals selected for residual feed intake (RFI) can be used as a model to elucidate molecular explanations for differences in growth efficiency. The objective of this study was to determine the extent to which the protein profile and posttranslational modifications of mitochondria from skeletal muscle and liver relate to feed efficiency gains in pigs divergently selected for RFI. Mitochondria were isolated from the longissimus dorsi (LD) muscle and the liver from pigs (n = 9 each for the high and low RFI line; BW = 95.8 kg). Mitochondria protein profile differences were determined using two-dimensional difference in gel electrophoresis. Proteins were identified using electrospray ionization mass spectrometry. In the line comparison, the β subunit of ATP synthase, heat shock protein (HSP) 60, and HSP70, were identified as being increased in mitochondria from the liver of the low RFI line (23 to 50%; P \u3c 0.1). These differences were not observed in the other comparisons. In the LD, proteins identified as being different between RFI phenotypes included HSP70 and subunit 1 of the cytochrome bc1 complex. These data indicate that genetic selection for RFI tends to result in a consistent change in mitochondrial protein profile. In contrast, classification by phenotype demonstrates that phenotypic differences in RFI are not specifically associated with alterations of the mitochondria protein profile

    Bitter Compounds Decrease Gastric Emptying and Influence Intestinal Nutrient Transport

    Get PDF
    The effect of bitter tasting compounds on gastric emptying and nutrient transport from the intestine was studied using in vivo and ex vivo models. Sixteen pigs were fed a diet containing the bitter compound phenylthiocarbamide (PTC). The animals were euthanized 45 minutes postprandially and gastric contents were measured to quantify the gastric retention. Additionally, freshly isolated small intestines were mounted into modified Ussing chambers to study the effects of PTC on ex vivo nutrient transport. In summary, bitter compounds decreased the gastric emptying in vivo and increased the nutrient transport ex vivo. Further, cell culture studies identified that bitter compounds might exert their action through stimulating the secretion of the intestinal hormone cholecystokinin (CCK) from the enteroendocrine cells by increasing the intracellular calcium concentrations. Altogether, these data suggest that bitter compounds regulate feed intake and nutrient transport
    corecore