47 research outputs found

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    Novel hybrid silica xerogels for stabilization and controlled release of drug.

    No full text
    Purpose: The goal was to show that incorporation of a model drug into a porous solid matrix with small enough pores should lead to composites in which the drug would be in the amorphous rather than in the crystalline state. Due to spatial constraints, the amorphous state was expected to be temporally highly stable. Methods: As a porous solid matrix silica was selected, while nifedipine served as a model drug. The silica-drug composites were prepared using a sol-gel procedure at conditions which yielded pores in the range 2-3 nm. To tune the properties of composites, two silica precursors were combined: tetraethoxysiiane (TEOS) and bis-1,2-(triethoxysilyl)ethane (BTSE). Results: In all composites the amorphous state of nifedipine was proven using several analytical methods. The amorphicity was preserved for at least several months. Drug incorporation into purely TEOS-based silica decreased significantly the release rate. Loosening the structure by addition of BTSE, while preserving the amorphicity, increased the drug dissolution rate. The dissolution behaviour was explained using a combination of the Noyes-Whitney and power law model. Conclusion: The observed release patterns could be interesting for therapies requiring a high initial drug concentration in blood plasma, followed by a slower release rate of the remaining drug

    The relation between the interfacial contact and SiO<sub>2</sub> coating efficiency and properties in the case of two clarithromycin polymorphs.

    No full text
    Two clarithromycin polymorphs with very similar particle size and morphology were coated with silica using a base-catalyzed sol-gel procedure. It was found that the contact angles, evaluated from measured surface free energies, correlate well with coating efficiency. The connection between interfacial contact (described with the contact angle), nucleation kinetics and coating performance was established using the heterogeneous nucleation theory. The resulting coating thickness and morphology were evaluated by means of thermal analysis. X-ray powder diffraction and scanning electron microscopy. Good agreement was found between the theoretical predictions and experimental findings

    Vitrification from solution in restricted space: Formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier.

    No full text
    Purpose: The goal was to find thermodynamic criteria that must be satisfied in order to prevent formation of crystalline state of drugs within a confined space (e.g., nanopores of inorganic solid). Similarly, criteria that lead to stabilization of amorphous drug within such pores were investigated. Methods: In the theoretical part, the classical thermodynamics of nucleation is applied to the conditions of a restricted space. The theoretical findings are verified using porous silica as a carrier and nifedipine as a model drug. The amorphicity of the latter is checked using XRD and thermal analysis (DTA, DSC) in combination with BET measurements. Results: It is shown that there exists a critical pore radius of a host below which the entrapped substance will solidify in an amorphous form. There also exists a critical pore radius below which the entrapped amorphous solid will not be able to crystallize. Specifically, incorporation of NIF into a silica xerogel with an average pore diameter of about 2.5 nm produces and stabilizes its amorphous form. Conclusion: Entrapment of drugs into solid nanoporous carriers could be regarded as a potentially useful and simple method for production and/or stabilization of non-crystalline forms of a wide range of drugs
    corecore