26 research outputs found
Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome
The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An oligonucleotide microarray assayed 40 tumour samples from ER(+)/HER2(−), ER(+)/HER2(+), ER(−)/HER2(+), and ER(−)/HER2(−) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57 (8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5. Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P=0.001) and higher histological grades (P=0.049). E2F-5-positive cancers were found more frequently in ER(−)/progesterone receptor (PgR)(−)/HER2(−) cancer samples (51.9%, P=0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P=0.0012). Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers. In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(−)/PgR(−)/HER2(−) status, a basal phenotype, and a worse clinical outcome
Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy
Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys.
The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
Stacked-Nanowires and FinFET Transistors: Guidelines fo the 7nm Technology
International audienc
HSQ Lithography for Nanowire First Integration: an Interesting Alternative for Gate Last Fabrication of Sub-7nm Stacked Nanowire FETs.
International audienc
(Invited) Evaluation of Stacked Nanowires Transistors for CMOS: Performance and Technology Opportunities
session New Device Architectures (G02-1168)International audienc