27 research outputs found

    Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles

    Get PDF
    © 2018, © 2018 Taylor & Francis. A library of 29 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles functionalized with a pyridoxine moiety was synthesized using a three-component one-pot reaction of aldehyde derivative of pyridoxine, malononitrile, and thiophenol. The obtained bipyridine structures were converted into methylpyridinium salts. Several compounds demonstrated expressed antibacterial activity with MICs (minimum inhibitory concentrations) in the range of 0.5–4 µg/mL against the three studied Gram-positive strains and 8–64 µg/mL against the Gram-negative E. coli strain, which was comparable or better than the activity of the reference antimicrobial agents. At the same time, all the synthesized compounds were inactive against the Gram-negative P. aeruginosa. Several compounds also demonstrated high cytotoxic activity against the studied tumor cells, but without selectivity for the normal HSF (human foreskin fibroblast) cells. Despite the preliminary character of the performed biological studies, the obtained results make the obtained structural chemotype a promising starting point for the design of physiologically active compounds

    Flexoelectricity and alignment phase transitions in nematic liquid crystals

    No full text
    The influence of the flexoelectric effect on the phase diagram relevant to the order transition induced by an electric field on a nematic liquid crystal is considered. The analysis shows that this influence can be important. It is found that the order phase transition between the initially undistorted and distorted configurations always takes place. In contrast, the phase transition between the distorted and the saturated configurations is possible only if the dielectric anisotropy is large enough. The stability of the phases is analysed. The existence of a tricritical point is predicted. The dependence of the tricritical point on the flexoelectric coefficient is discussed too. The limits of our calculations and the performed simplifying hypotheses are critically analysed

    Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles

    No full text
    © 2018, © 2018 Taylor & Francis. A library of 29 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles functionalized with a pyridoxine moiety was synthesized using a three-component one-pot reaction of aldehyde derivative of pyridoxine, malononitrile, and thiophenol. The obtained bipyridine structures were converted into methylpyridinium salts. Several compounds demonstrated expressed antibacterial activity with MICs (minimum inhibitory concentrations) in the range of 0.5–4 µg/mL against the three studied Gram-positive strains and 8–64 µg/mL against the Gram-negative E. coli strain, which was comparable or better than the activity of the reference antimicrobial agents. At the same time, all the synthesized compounds were inactive against the Gram-negative P. aeruginosa. Several compounds also demonstrated high cytotoxic activity against the studied tumor cells, but without selectivity for the normal HSF (human foreskin fibroblast) cells. Despite the preliminary character of the performed biological studies, the obtained results make the obtained structural chemotype a promising starting point for the design of physiologically active compounds

    Synthesis and antimicrobial activity of adamantyl substituted pyridoxine derivatives

    No full text
    © 2019 Bentham Science Publishers Background: Adamantane derivatives possess multiple pharmacological activities such as antiviral, anticancer, antimycobacterial, antidiabetic, antiparkinsonian and others. The interest of medicinal chemists in adamantane compounds is due to their unique spatial structure, high lipophilicity, and carbon cage rigidity. As a result, these molecules can easily penetrate biological lipid membranes and often have unique target-specific activity profile. Another pharmacophore studied in this work is pyridoxine (vitamin B6). Pyridoxine plays highly important roles in living cells as a key cofactor of many enzymes. On the other hand, its molecular scaffold is a valuable structural platform which has led to the development of several launched drugs (Pyritinol, Pirisudanol, Cycletanine, Mangafodipir) and a wide number of preclinical and clinical drug candidates. Objective: The objective of this study is a synthesis of pyridoxine-adamantane and pyridoxinecyclooctane dipharmacophore molecules. The underlying idea was to assess the antibacterial and antiviral potential of such dipharmacophores, based on multiple examples of promising antiinfective agents which have in their structures adamantane and pyridoxine moieties. Another specific reason was to explore the ability of pyridoxine pharmacophore to suppress the potential of microbial pathogens to develop resistance to drug molecules. Methods: In this study, a series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkyl amines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. All synthesized compounds have been tested for their in vitro activity against M. tuberculosis H37Rv strain and H3N2 (A/Aichi/2/68) influenza virus. Results: Series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkylamines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. Reaction of cycloalkylamines with pyridoxine derivatives, in which meta-hydroxyl and ortho-hydroxymethyl groups are protected by acetyl groups, represents a useful alternative to reductive amination of aldehydes and nucleophilic substitution of alkyl halides. According to a tentative mechanism, it proceeds via paraand ortho-pyridinone methides which readily react with nucleophiles. None of the synthesized dipharmacophore compounds showed activity against M. tuberculosis H37Rv strain. At the same time, three compounds demonstrated some antiviral activity against H3N2 (A/Aichi/2/68) influenza virus (EC50 52-88 μg/mL) that was comparable to the activity of Amantadine, though lower than the activity of Rimantadine. The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane. Conclusion: The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane
    corecore