190 research outputs found
Atomic density and temperature distributions in magneto-optical traps
A theoretical investigation into density, pressure, and temperature distributions in magneto-optical traps is presented. After a brief overview of the forces that arise from reradiation and absorption, a condition that the absorptive force be conservative is used to show that, if the temperature is uniform throughout the trap, any. density solutions to the force equations will not be physical. Further, consistent density solutions are unlikely to exist at all. In contrast, with a varying temperature reasonable solutions are demonstrated, with some restrictions. Doppler forces involved in ring-shaped trap structures are used to calculate orbit radii in racetrack geometry traps, and corrections to the present discrepancy between theoretical and experimental studies are discussed in the context of reradiation and diffusion
Photoionization of ultracold and Bose-Einstein condensed Rb atoms
Photoionization of a cold atomic sample offers intriguing possibilities to
observe collective effects at extremely low temperatures. Irradiation of a
rubidium condensate and of cold rubidium atoms within a magneto-optical trap
with laser pulses ionizing through 1-photon and 2-photon absorption processes
has been performed. Losses and modifications in the density profile of the
remaining trapped cold cloud or the remaining condensate sample have been
examined as function of the ionizing laser parameters. Ionization
cross-sections were measured for atoms in a MOT, while in magnetic traps losses
larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure
Test of candidate light distributors for the muon (g2) laser calibration system
The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser
calibration system for all the 1296 channels of the calorimeters. An
integrating sphere and an alternative system based on an engineered diffuser
have been considered as possible light distributors for the experiment. We
present here a detailed comparison of the two based on temporal response,
spatial uniformity, transmittance and time stability.Comment: accepted to Nucl.Instrum.Meth.
Autler-Townes splitting in two-color photoassociation of 6Li
We report on high-resolution two-color photoassociation spectroscopy in the
triplet system of magneto-optically trapped 6Li. The absolute transition
frequencies have been measured. Strong optical coupling of the bound molecular
states has been observed as Autler-Townes splitting in the photoassociation
signal. The spontaneous bound-bound transition rate is determined and the
molecule formation rate is estimated. The observed lineshapes are in good
agreement with the theoretical model.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A (Rapid
Communication
- …