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Supersolids are a fundamental quantum phase of matter where the global phase and translational
symmetries are spontaneously broken. The recently discovered supersolidity in quantum gases of strongly
magnetic atoms gives the opportunity to explore in depth how superfluidity and crystalline order are mixed
in this fascinating phase. The dipolar supersolid is usually created from a Bose-Einstein condensate, i.e., a
standard superfluid, crossing a quantum phase transition that is related to the crystallization transitions of
ordinary matter. In this work, we assess experimentally and theoretically the character of the superfluid-
supersolid quantum phase transition. We find that one-row supersolids can have already two types of phase
transitions, discontinuous and continuous, that are reminiscent of the first- and second-order transitions
predicted in the thermodynamic limit in 2D and 1D, respectively. The dimensional crossover is peculiar to
supersolids, is controlled via the transverse confinement and the atom number, and can be justified on the
general ground of the Landau theory of phase transitions. The quasiadiabatic crossing of a continuous
phase transition opens new directions of investigation for supersolids.
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I. INTRODUCTION

Supersolids are a fundamental phase of matter that mixes
the properties of superfluids and crystals. Proposed more
than 50 years ago [1–4], a supersolid phase was recently
observed in Bose-Einstein condensates of strongly mag-
netic atoms [5–7], featuring simultaneous breaking of
the global U(1) and translational symmetries [8–10] and
reduced moment of inertia under rotations [11]. The
so-called dipolar supersolid requires a confinement along
at least one spatial direction, so the lattice structure
can develop in 1D [5–7] or in 2D [12]. The lattice is
compressible, differently from that of light-induced super-
solids [13,14]. The nature of the atomic interactions is such
that the supersolid is of the cluster type, i.e., each lattice
site hosts many atoms, of the order of 1000. This realizes
the scenario first depicted by Gross [1], ensuring strong

superfluidity effects. Thanks to the tunability of the
interactions, it is possible to study the quantum phase
transition between the superfluid phase, a standard Bose-
Einstein condensate, and the supersolid phase [5–7,15], in
addition to the classical phase transition from a thermal gas
to a supersolid [16].
Here we focus on the superfluid-supersolid quantum

phase transition, a new fundamental phase transition whose
character has been only partially assessed. In the thermo-
dynamic limit, various models predict first-order transitions
in 2D [17–19], and second-order transitions in 1D [20], in
analogy to standard crystallization transitions. A transition
of the latter type was observed experimentally in cavity
supersolids [13,21]. For dipolar supersolids, the predicted
scenario is more complex, with two types of first-order
transitions for 2D lattices [22,23] and both first- and
second-order transitions for 1D lattices [24,25] depending
on the density. In the experiments, the problem is compli-
cated not only by the dimensionality varying continuously
between 1D and 2D but also by the finite size and the
inhomogeneity due to the presence of harmonic potentials.
So far, the quantum phase transition was crossed only for
supersolids with 1D lattice structures. Some of the studies
reported partial indications of a discontinuous [5,6,8] or a
continuous transition [26], while others did not address the
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character of the transition [15]. Therefore, it is not clear
whether in one-row dipolar supersolids one can observe
continuous, discontinuous, or both types of quantum
phase transitions, nor how these transitions relate to the
general theory. For trapped supersolids with 2D lattice
structures, numerical simulations predict discontinuous
transitions [27,28].
Although there are materials featuring density-

modulated cluster phases similar to the dipolar supersolid,
such as the smectic phase of liquid crystals [29] or the
Rosensweig phase of ferrofluids [29,30], these phases are
normally reached via classical transitions and at fixed dimen-
sionality. Also the pair-density-wave quantum phases
recently discovered in He superfluids [31,32] and in super-
conductors [33] have so far only been studied in 2D geo-
metries. Hence, no results from existing phase transitions can
be employed to draw predictions about dipolar supersolids.
In this work we perform a combined experimental and

theoretical investigation to assess the character of the
superfluid-supersolid phase transition for one-row dipolar
supersolids. We find that the phase transition changes from
continuous to discontinuous as the system geometry is
changed from 1D to 2D, in analogy to the second-order and
first-order crystallization transitions in 1D and 2D, respec-
tively. There is, however, an important novelty due to the
very nature of supersolids: the discontinuous transition can
persist also for apparently 1D lattices, due to the intrinsic
density background of the supersolid which keeps a 2D
structure. In addition, the cluster nature of the dipolar
supersolid limits the impact of finite-size effects and allows
us to observe the character of the phase transition also in
systems with very short lattices.
Our analysis reconciles previous results, justifies the

observations on the general grounds of the Landau theory,
and shows how to achieve in a controllable way continuous
or discontinuous quantum phase transitions in one-row
supersolids. Continuous transitions are particularly inter-
esting as they allow us to realize excitation-free supersolids,
opening new directions of investigation.

II. FORMATION OF THE DIPOLAR SUPERSOLID
IN AN INFINITE SYSTEM

The geometry of the dipolar supersolids investigated
experimentally is sketched in Fig. 1. The magnetic dipoles
are aligned in the z direction by a magnetic field B, and an
anisotropic harmonic potential is present in the three spatial
directions.
To get intuition into the physics at play, we start from the

infinite case, removing the confinement in the x-y plane.
We consider a dipolar quantum gas at T ¼ 0, described by
the wave function ψ , with density ρ ¼ jψ j2. The energy of
the system is (see the Appendix B)

E½ψ � ¼ Ekin þ Etrap þ Econt þ Edd þ ELHY: ð1Þ

The first term is the kinetic energy, Ekin ∝ j∇ψ j2. Etrap

describes a vertical harmonic confinement with frequency
νz. The mean-field contact and dipolar interactions scale as
Econt ∝ asρ2 and Edd ∝ addρ2, where as is the s-wave
scattering length and add ¼ μ0μ

2m=ð12πℏ2Þ is the dipolar
length associated with particles with magnetic dipole μ and
mass m. The last term is the so-called Lee-Huang-Yang
(LHY) energy, which describes the zero-point energy of
quantum fluctuations in the local-density approximation
[34], and scales as ELHY ∝ ρ5=2.
The transition from the superfluid to the supersolid is

crossed by reducing the repulsive scattering length as, thus
increasing the relative strength of the dipolar interaction. In
the supersolid phase, the dipolar energy is reduced due to
the enhancement of head-to-tail arrangement of the dipoles
within each cluster, but there is an increase of both contact
energy, coming from an increase in the peak density, and in
kinetic energy, due to the density modulation. When the
dipolar gain is larger than the contact and kinetic costs, the
transition takes place.
The lattice period λ of the supersolid is of the order

of the harmonic length in the direction of the B field,
lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2πmνz

p
, as sketched in Fig. 1, close to the

wavelength of the roton excitation mode of the superfluid
[35,36]. Hereinafter, we integrate out the z direction and we
refer to 1D and 2D supersolids depending on the breaking
of translational invariance occurring along one or two
directions in the x-y plane.
At the mean-field level the supersolid is unstable, since

the dipolar energy becomes more and more negative for
increasing density. Collapse is eventually prevented by
the repulsive LHY energy term. By further decreasing
the scattering length, the system crosses a second phase
transition toward a droplet crystal, where the superfluid
background disappears and coherence between clusters is
lost [5–7]. In the present work we do not study the latter
transition.
Generally, the main features of a phase transition are

captured by the Landau theory, in which the ground state of
the system is determined by the behavior of the free energy

FIG. 1. Geometry of the elongated superfluid (left) and the one-
row supersolid (right) commonly realized in experiments. The
atomic magnetic dipoles are aligned in the z direction by the
magnetic field B. The relevant length scales are the harmonic
confinement length lz and the supersolid lattice spacing λ.

GIULIO BIAGIONI et al. PHYS. REV. X 12, 021019 (2022)

021019-2



as a function of the order parameter. For crystallization
phase transitions, the typical order parameter is the contrast
C of the density modulation, which is zero in liquidlike
phases and different from zero in crystal-like phases.
Although in general C is complex, for the purpose of
our analysis we can take it real; see Appendix A. The
energy difference between the state with C ¼ 0 and that
with C ≠ 0 can be expanded in powers of C as

ΔE ≃ aCþ bC2 þ cC3 þ dC4; ð2Þ

where the values of the coefficients a, b, c, d determine the
character of the phase transition. In the infinite case under
consideration, the linear term a is zero, but it appears when
a trap is present; see Appendix A.
As usual in the context of the Landau theory, the

symmetries of the ground state provide information on
the character of the phase transition. Close to the transition,
where C ≪ 1, a sinusoidal modulation is a good approxi-
mation for the supersolid ground-state density [17,22,25]:

ρðrÞ ¼ ρ0

�
1þ C

X
i

cosðki · rÞ
�
; ð3Þ

where ρ0 is the average density and ki the lattice wave
vectors defining the lattice dimensionality.
In 1D the supersolid lattice is characterized by a single

wave vector k. In this case, ansatz (3) is symmetrical with
respect to the substitution C → −C, which leads only to an
overall displacement of the lattice structure. Therefore,
states which differ only in the sign of the contrast are
physically equivalent. The free energy Eq. (2) must be an
even function of C; i.e., c1D ¼ 0. The transition occurs
when, by lowering the scattering length, the dipolar energy
overcomes the contact energy and reverses the sign of the
quadratic coefficient b1D. Therefore, the transition is of the
second order; see Fig. 2(a).
The 2D case was studied in Refs. [17,22]. The supersolid

lattice is triangular, which is the closest packing configu-
ration, with lattice wave vectors of equal length satisfying
k1 þ k2 þ k3 ¼ 0. In this case, the previous symmetry is
lost, as ansatz (3) represents two very different states
depending on the sign of C. For C > 0 it corresponds to
a triangular lattice of density maxima, for C < 0 to a
triangular lattice of holes, i.e., a honeycomb lattice.
Therefore, the free-energy expansion Eq. (2) can contain
odd terms, in particular the cubic term c2D. This results in a
discontinuous phase transition, characterized by the pres-
ence of a metastable state with finite contrast and a jump in
the order parameter. In dipolar supersolids, the sign of the
cubic term c2D depends on the competition between kinetic
and LHY energy [22]. At relatively low density, kinetic
energy dominates and leads to c2D < 0, resulting in a phase
transition toward a triangular lattice with C > 0; see solid
lines in Fig. 2(b). At high densities, the LHY contribution

becomes important and can reverse the sign of c2D. In this
case, the ground state is a honeycomb lattice with C < 0;
see the dotted line of Fig. 2(b).
We note that the Landau theory allows for a discontinu-

ous phase transition also for the 1D case, when the free
energy is an even function of C. This happens if the quartic
coefficient d1D is negative [29]. To ensure stability, one has
to expand the free energy to the sixth order. By decreasing
the scattering length, one crosses a discontinuous transition
as shown by the dashed line in Fig. 2(a). For the dipolar
supersolid, d1D is determined by the competition between
kinetic energy (positive contribution) and LHY energy
(negative contribution). At very high densities, therefore,
when the LHY energy dominates, we expect a first-order
transition also in 1D. Since the LHY term is the zero-point
energy of quantum fluctuations, the discontinuous transi-
tion in this regime belongs to the class of fluctuation-
induced first-order phase transitions, as those found in
some types of superconductors and liquid crystals [37].
Such an effect can explain the numerical observations
in Ref. [25].

III. THEORETICAL PHASE DIAGRAM IN THE
TRAPPED SYSTEM IN EQUILIBRIUM

Moving to the finite-size systems studied in experiments,
one should replace the thermodynamic concepts of first-
and second-order phase transitions with those of dis-
continuous and continuous transitions. In addition, the
inhomogeneity of the density in the harmonic potentials
generally leads to a coexistence of the two phases.
In the supersolids realized so far, the harmonic confine-

ment in the x-y plane is typically anisotropic, leading to
the formation of one-row lattices. One would naturally

FIG. 2. Landau theory of the superfluid-supersolid quantum
phase transition in the thermodynamic limit. Scenarios for
second-order phase transitions in 1D (a) and first-order phase
transitions in 2D (b). Solid lines are the typical behavior of the
free energy as a function of the order parameter C for varying
scattering length. Dashed lines are examples of the free energy in
the LHY-dominated regime. Insets show the lattice structure.
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associate such configuration with the second-order phase
transitions of the infinite system. However, various experi-
ments [5,6,8] and numerical simulations [24,25] have
shown the presence of apparently discontinuous transitions.
To clarify the scenario, in this section we present a detailed
analysis of the equilibrium states of trapped supersolids,
obtained via numerical simulations.
To characterize the typical trapped systems, we fixed two

of the trap frequencies to realistic values, νx ¼ 20 Hz and
νz ¼ 80 Hz, which result in a supersolid elongated in the x
direction. We then varied both the transverse frequency νy
and the atom number N in realistic ranges, and for each set
of values we studied the evolution of the ground state of the
system as a function of the scattering length as. The ground
state was obtained by minimizing numerically the energy in
Eq. (1), with the addition of trap energies also in the x and y
directions.
Figure 3 presents a summary of the simulations.

Figure 3(a) shows the presence of various regions of
continuous and discontinuous transitions in the N − νy

plane. For small νy, the trap approaches a circular shape in
the x-y plane and the supersolid forms on two rows with
a triangular structure. There, we find a discontinuous
transition, in analogy with the first-order phase transition
in 2D discussed in Sec. II. By increasing the transverse
frequency, at first we continue to observe discontinuous
transitions although the supersolid apparently forms on a
single row, and only for large frequency we observe
continuous transitions as expected for 1D systems. For
large N, Fig. 3(a) shows a second regime of discontinuous
transitions, which we discuss later. The regime of small N
is instead irrelevant, since the supersolid lattice shrinks to a
single cluster.
The specific order parameter we consider is the con-

trast in momentum space C̃, i.e., the height of the Fourier
peak at k ¼ 2π=λ, related to the real-space contrast by

C̃2 ¼ C2=16, in the limit of small C (see Appendix B). As
we show in the next section, this choice is motivated by the
presence of a related experimental observable. Figure 3(b)
shows examples of the phase transitions for fixed νy ¼
90 Hz and variable N. While for large atom numbers C̃
changes smoothly with as, for smaller N the transition is
discontinuous, with a finite jump in the contrast. We
arbitrarily chose the boundary between continuous and
discontinuous transitions as the smallest value of N that
gives a jump in C̃ at the transition point smaller than 0.001.
Such a boundary can be thought of as a line of tricritical
points [38].
Note that all transitions we explored numerically end up

in distributions with moderate or large density overlap
between neighboring clusters, a necessary condition for
preserving the global phase coherence typical of super-
solids [4]. As shown by the sample distributions in Fig 3(a),
the supersolid lattice forms in the central region of the
system, while the low-density sides tend to remain in the
superfluid regime. However, their weight is normally very
small, so the behavior of the system is dominated by the
supersolid.
Although in most of the phase diagram the supersolid

seems to develop with a single row of maxima, a Fourier
analysis reveals the presence of a triangular structure of
the density background. An example of such analysis is
shown in Fig. 4. One notes the presence of Fourier peaks
not only along the x direction but also along the y direction,
although with much smaller amplitude and larger momen-
tum; see Figs. 4(c) and 4(d). Therefore, even in the presence
of a single row of principal density maxima there is clearly
a persistence of the triangular structure of the 2D super-
solid. Both amplitude and momentum change conti-
nuously when moving along the dimensional crossover;
see Figs. 4(e) and 4(f). Interpreting the changing character
of the transition in terms of the Landau theory, we conclude
that the main effect of an increasing atom number is to
suppress progressively the 2D triangular structure. This
results in a progressive suppression of the cubic terms in the

FIG. 3. Character of the superfluid-supersolid phase transition
from numerical simulations. (a) Character of the transition as a
function of the atom number N and the trap frequency νy. Black
dots mark the boundary between the continuous and discontinu-
ous regimes. Error bars are the atom number resolution in the
simulations. Gray dots mark the onset of the LHY-dominated
regime. Insets: samples of supersolid density distributions. From
left to right, peak densities are 5.48 × 1011, 3.19 × 1011, and
1.98 × 1011 cm−2. (b) Contrast as a function of the scattering
length for different values of N, and νy ¼ 90 Hz [dashed line in
(a)]. The curve corresponding to the continuous-discontinuous
boundary is plotted in black. Solid lines are a guide for the eye.
Inset: definition of the contrast in momentum space.
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energy expansion, especially the kinetic energy term,
which weakens the discontinuity until the transition
becomes continuous. There is a similar effect increasing
νy at constant N.
The prevalence of discontinuous transitions in theN − νy

plane of Fig. 3(a) is due to a change of the compressibility
of the supersolid for varying atom numbers. At smallN, the
clusters are more compressible and the triangular structure
can be deformed more easily by the transverse confine-
ment. This favors discontinuous transitions over continuous
ones. Additional analysis of the simulated density distri-
butions shows that the transverse size σy of the supersolid at
the phase transition at the continuous-discontinuous boun-
dary is very close to the harmonic oscillator length ly, i.e.,
the size of a noninteracting system; see Appendix B 2. This
supports the idea that the transition becomes discontinuous
when there is enough space in the trap to accommodate a
2D structure.
In the phase diagram of Fig. 3(a) we observe also two

clear effects of the LHY energy term in Eq. (1), which is
normally small until one reaches the regime of large
densities, i.e., large N. The first effect is the presence of
the additional continuous-discontinuous boundary for large
N. This is due to a gradual increase of the LHY energy as
the supersolid contrast increases, since the density also
increases. The LHY contribution reverses the sign of the

quartic term in the Landau expansion and changes the
transition from continuous to discontinuous, as discussed
in Sec. II. It is therefore a fluctuation-induced phase
transition, related to the one found in the infinite case of
Ref. [25]. The second effect is a gradual elongation along y
of the clusters for increasing N and decreasing νy. This
effect is due to the increasing cost in LHY energy,
which favors the formation of a 1D lattice of “stripes”
directed along y instead of a triangular lattice, as obser-
ved in previous simulations [23,39]. This effect broadens
the region of continuous phase transitions in the upper left
part of the N − νy plane. See Appendix B for further
discussion.
Finally, in the simulations we observe a small modula-

tion appearing in discontinuous transitions just before the
jump to higher contrast states, resulting in a mixing of
continuous and discontinuous transitions. In the framework
of the Landau model, we interpret such an effect as a
consequence of the trapping energy, which introduces a
term linear in C in the energy expansion (see Appendix A).
This term is responsible for a small asymmetry between C
and −C, which tends to produce a weak modulation of the
density even on the superfluid side. This effect was seen
previously in numerical simulations of dipolar Bose-
Einstein condensates [40].

IV. EXPERIMENTAL EVIDENCE OF
CONTINUOUS AND DISCONTINUOUS

PHASE TRANSITIONS

We tested experimentally the theoretical predictions on a
supersolidmade of 162Dymagnetic atomswith dipolar length
add ¼ 130a0, trapped in optical potentials. To move from
continuous to discontinuous transitions it is sufficient to
change the aspect ratio of the harmonic potential in the y-z
plane, at constant atom number. We chose in particular two
potentials featuring continuous or discontinuous transitions.
Potential VC, with frequencies ðνx; νy; νzÞ ¼ ½15.0ð0.7Þ;
101.0ð0.3Þ; 93.9ð0.6Þ� Hz, provides a strong confinement
along y, leading to a continuous transition. Potential VD,
with frequencies ½21.8ð1.0Þ; 67.0ð0.8Þ; 102.0ð0.7Þ� Hz,
provides instead a weaker confinement along y, leading to
a discontinuous transition. Figure 5 shows the predicted
evolution of the contrast C̃with the scattering length from the
ground-state simulations. In both cases, the mean atom
number at the transition is about N ¼ 3 × 104. Both con-
figurations correspond to one-row supersolids.
Unlike the theory presented so far, in the experiment we

study the dynamical evolution of the system for varying as,
starting from the superfluid side of the transition. This does
not necessarily correspond to following the equilibrium
ground state. The dynamical nature of the problem involves
concepts not discussed so far, such as adiabaticity, dis-
sipation, and, in the case of discontinuous phase transitions,
hysteresis.

FIG. 4. Two-dimensional structure of the density background
across the dimensional crossover. Real-space (a) and Fourier-
space (b) simulated density of a supersolid with N ¼ 1.4 × 104

and νy ¼ 90 Hz, at the continuous-discontinuous boundary. Peak
density in (a) is 2.14 × 1011 cm−2. (c),(d) Cuts in the Fourier
space, along the black line (c) and the red line (d) in (b) reveal the
presence of peaks in both x and y directions. (e) Ratio of the
Fourier amplitudes along y and x, and (f) Fourier spacing along y,
for the simulations of Fig. 3(b), at C̃ ≃ 0.04. Vertical dotted lines
mark the continuous-discontinuous boundary.
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The experiments start from a standard superfluid, at
typical temperatures T ≤ 10 nK. The scattering length is
then slowly reduced by means of a magnetic Feshbach
resonance. The speed of the magnetic-field ramp was
chosen as a compromise between adiabaticity and a not
too large impact of the unavoidable three-body losses [5].
The optimal ramp speed, _as ¼ 0.5a0=ms, allows us to ramp
across the transition in potential VC almost adiabatically.
We note that the three-body loss rate scales as ρ2, so it
reaches its maximum value at the density peaks in the
supersolid phase. These losses have both a detrimental and
a beneficial effects for the study of the phase transition.
If on the one hand they decrease ρ over time, on the other
hand they introduce a moderate damping of the excitations
connected to a local increase in density (see Appendix C 4
for details).
We studied the system via absorption imaging after a

sudden release from the optical potential, followed by a
long free expansion. Just before the release, we rapidly
increase the scattering length to a large value (as ≃ 140a0)
in order to reduce the relative effect of the dipole-dipole
interaction (see Appendix C 1) [6]. The measured distri-
bution, see examples in Fig. 6(a), can be related to the
theoretical momentum distribution, ρðkx; kyÞ, although
there are small modifications due to interactions during
the expansion. The main observable is the contrast C̃, i.e.,
the relative height of the peak at the characteristic momen-
tum of the supersolid, as in the theory (see Appendix C 2).
Figure 6 presents the main experimental observations

when crossing the superfluid-supersolid transition in poten-
tials VC and VD. In particular, we study the evolution of C̃
for an ingoing ramp from the superfluid to the supersolid
(filled circles) and for a subsequent outgoing ramp from the
supersolid to the superfluid (open circles). The experimen-
tal trajectories in the as − t plane are shown in Fig. 6(a).
The holding time before imaging is 20 ms, which we found
to be sufficient to form the supersolid.
Phase transitions in potentials VC and VD show com-

pletely different behaviors; see Figs. 6(b) and 6(c). In
potential VC [Fig. 6(b)], the ingoing ramp shows a smooth

increase of C̃, with small shot-to-shot fluctuations. During
the outgoing ramp C̃ returns gradually to zero, indicating
that the phase transition can be crossed sequentially in the
two directions without creating large excitations.
In potential VD instead [Fig. 6(c)], the ingoing ramp

shows strong fluctuations of C̃ already before the phase
transition, in the region ð97–93Þa0, followed by a steep
increase of C̃ around 93a0. At the transition we also
observe a jump in the atom number due to the increase
of density in the supersolid phase; see Appendix C 4.
Remarkably, during the outgoing ramp, C̃ remains very
large, for up to at least 10a0 in the superfluid regime. While
transition VC can be crossed back and forth almost

FIG. 6. Experimental observation of continuous and discon-
tinuous phase transitions. (a) Trajectories in the as − t plane for
the ingoing (filled symbols) and outgoing (empty symbols)
ramps. Insets: examples of experimental momentum distribu-
tions, from left to right, in the superfluid, supersolid, and excited
superfluid regimes for potential VD. (b),(c) Contrast C̃ versus
scattering length during ingoing (dots) and outgoing (circles)
ramps for potentials VC (b) and VD (c), respectively. Vertical
dashed lines mark the theoretical position of the transitions. (d),
(e) Time evolution of C̃ for potential VD at as ¼ 87.3a0 in the
ingoing ramp (d) and at as ¼ 100.3a0 in the outgoing ramp (e),
respectively. Dots are experimental data, lines are fits with a
damped oscillation model. Error bars represent the standard error
of the mean of about 10–20 measurements.

FIG. 5. Equilibrium transitions in the experimental configura-
tions. Simulated momentum-space contrast versus scattering
length for harmonic potentials VD (blue) and VC (magenta) with
N ¼ 3 × 104. Inset: shape of the contour lines in the y-z plane for
the two potentials.
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adiabatically for our ramp speed, crossing transition VD is
manifestly nonadiabatic. The two behaviors are consistent
with continuous and discontinuous phase transitions,
respectively. We checked that the difference in adiabaticity
for the two transitions persists for the whole range of
ramp speeds that can be achieved experimentally; see
Appendix C 6.
In potential VD, we observe strong excitations of various

collective modes by crossing the transition. In particular,
we focus on the oscillation of the order parameter C̃.
Figures 6(d) and 6(e) show the dynamics of C̃ for two
selected values of as after the ingoing and outgoing ramps.
After the ingoing ramp [Fig. 6(d)], the oscillation amplitude
is smaller than its mean value, so a finite contrast persists
throughout the observed time evolution. The oscillation
frequency, ν ¼ 21ð3Þ Hz, is consistent with the so-called
amplitude mode of the supersolid, already studied in
Ref. [8]. After crossing back the transition [Fig. 6(e)],
we still observe a sinusoidal oscillation. However, in this
case the oscillation’s amplitude is comparable with its
mean value, so C̃ is about zero in its minima. Since C̃ is
proportional to the square of the real-space contrast C, we
identify such oscillation with an excited mode of the
superfluid with zero mean value of C. Such oscillations
are also present for potential VC but with much smaller
amplitude, so we can associate them to a nonadiabatic
crossing of the phase transition from the supersolid to the
superfluid. Note that the experimental C̃ for potential VD in
the static measurements of Fig. 6(c) is larger than the
simulated one (Fig. 5) due precisely to the presence of such
excited mode of the superfluid, since the measurements are
performed close to the first maximum of the oscillation.
To corroborate theoretically these observations, we

performed numerical simulations of the dynamics of a
simplified zero-temperature system, without quantum fluc-
tuations (besides the LHYenergy term), and without losses.
Although this system is different from the real one because
it lacks dissipation, it allows us to confirm the nature of
the observations without introducing phenomenological
parameters like temperature or loss rate. Because of the
absence of dissipation, the simulations employ scattering-
length ramps slower by one order of magnitude than in the
experiment, _as ¼ 0.05a0=ms, to achieve a quasiadiabatic
crossing of the continuous transition. See Appendix D for
details.
The simulations confirm the different nature of the

observed oscillations. As shown in Fig. 7, the ingoing
ramp excites the amplitude mode of the supersolid, with C̃
featuring small-amplitude oscillations around a relatively
large value. The outgoing ramp produces instead an
oscillation of C̃ with smaller amplitude and with minima
at zero, corresponding to an oscillation of the real space C
around zero, as shown by the samples of the real-space
densities in Figs. 7(f)–7(h). Additional simulations show
that the latter oscillation can be excited also at fixed

scattering length on the superfluid side of the transition,
by imposing an initial density modulation similar to that of
the supersolid. Furthermore, the oscillation amplitude
becomes very small if one removes the dipolar energy
term from Eq. (1). This indicates that the oscillations are an
excited mode of the superfluid, related to the so-called
roton mode [41], but in a regime of large amplitudes.
In the experiment, crossing the phase transition pro-

duces other types of excitations besides the specific
amplitude mode analyzed so far, with amplitudes system-
atically larger in potential VD than in potential VC. In
particular. we observe the so-called lattice mode of the
supersolid [5], as well as additional longitudinal and
transverse modes. In order to quantify the different degree
of excitation for the two potentials, we measured the total
energy in the momentum distribution after the free expan-
sion, Eexp ¼ ℏ2hk2x þ k2yi=ð2mÞ. This quantity overesti-
mates the total energy of the system immediately after
the removal of the potential, due to the subsequent increase

FIG. 7. Numerical simulations of the dynamics. Contrast for
potential VC as a function of time, following an ingoing ramp
from 95a0 to 93a0 (a) or an outgoing ramp from 90a0 to 95a0 (e).
Panels (b)–(d) and (f)–(h) show examples of the density dis-
tribution along x at specific times [vertical lines in (a) and (e),
respectively].
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of as during the first phase of the expansion. Figure 8
shows the variation ΔE of the expansion energy with
respect to the superfluid with the largest as. The stronger
excitation for potential VD for both ingoing and outgoing
ramps is apparent. A quantitative comparison of the two
ingoing ramps is difficult, since the supersolid in potential
VD has generally a larger contrast, which implies larger
Eexp. A comparison can instead be made for the outgoing
ramps, since both end in the superfluid regime. Here,
potential VD shows an excess energy ΔE ≃ 4 nK, much
larger than in potential VC, ΔE ≃ 0.5 nK. This is a further
evidence of the different character of the phase transitions
in the two potentials. The numerical simulations show a
difference in excess energy when crossing the two phase
transitions of the same order of magnitude, ΔE ≃ 0.2 nK
for potential VC and ΔE ≃ 1 nK for potential VD; see
Appendix D for details.
We verified that the phase transitions in the experiment

lead from the superfluid to a coherent supersolid, by
checking that the fluctuations of the phase of ρðkxÞ are
small [5]. This happens in the whole scattering length
regions below the transitions in Figs. 6(d) and 6(e).
Interestingly, the variance of the phase for potential VC
is much smaller than that for VD, implying that also phase
excitations are minimized by crossing the continuous phase
transition. See Appendix C 3 for details.
A relevant question is whether the discontinuous tran-

sition in potential VD shows hysteresis similarly to first-
order phase transitions, i.e., different locations of the phase
transition depending on the direction in which the transition
is crossed. However, the concept of hysteresis (in the
thermodynamic sense) applies only to systems that are in
equilibrium. Our system is out of equilibrium, as it cannot
entirely dissipate the energy acquired when crossing the

transition from the superfluid to the supersolid. Therefore,
we do not expect to observe hysteresis. In the dynamical
measurements as in Figs. 6(d) and 6(e) we indeed do not
observe any hysteresis, within our current resolution of 2a0.
The simulations predict a hysteresis of just about 0.5a0 in
the hypothetical equilibrium case; see Appendix D.

V. EXPERIMENTAL FLUCTUATION SPECTRUM

A confirmation of the different character of the two
phase transitions comes from an analysis of the fluctuations
of the contrast. Fluctuations are generally enhanced in the
vicinity of a phase transition, including the superfluid-
supersolid phase transition [15]. We already noted the
presence of shot-to-shot fluctuations of C̃ for the data in
Figs. 6(a) and 6(b). These fluctuations can have quantum,
thermal, or technical origin, the latter being presumably
dominated by the shot-to-shot fluctuations in the atom
number, which in turn determine fluctuations in the critical
scattering length. One expects the fluctuations to have
different distributions for continuous and discontinuous
phase transitions, due to the different shape of the Landau
free energy (see, e.g., Ref. [42]).
Figure 9 presents the distributions of C̃ measured for

the two transitions, binned in four intervals of scattering
length: well before, just before, just after, and well after
the transition. For potential VC, the distributions show the
expected behavior of a continuous phase transition; see
Fig. 9(a). For large as (region I), the system is in the
superfluid phase in each experimental run. For smaller as,
when the modulation appears (region II), a portion of the
samples comes apart from the peak at zero contrast,
populating a region of small contrasts nearby. Deeper into
the supersolid region (region III), the peak at zero contrast
is depleted and the system occupies a well-defined set of
contrasts. Decreasing further as toward the droplet crystal
regime (region IV), the contrast becomes larger on average
but also noisier, probably because of the enhancement of
three-body losses which modify from shot to shot the
density distribution, depending on the details of the
dynamical formation process.
For potential VD, see Fig. 9(b), the situation is quite

different. Just before the transition (region II), the histo-
gram separates into two peaks: a main one at zero contrast
and a smaller one at finite contrast. We interpret the latter
peak as due to fluctuations into the second minimum of
the Landau free energy, across the barrier. Moving toward
the droplet crystal, the double-peak structure changes to the
same broad distribution of the continuous case.
The experimental observations are corroborated by the

Landau free energy calculated from realistic models of
the trapped supersolids in potentials VC and VD, shown in
Figs. 9(c) and 9(d). While the continuous transition in
potential VC has a single minimum, the discontinuous
transition in VD has two minima, which in the experiment
can be populated alternatively depending on thermal,

FIG. 8. Experimental energy variation across the phase tran-
sitions. Variation of the expansion energy for potential VC (a) and
potential VD (b), during the ingoing (filled circles) and outgoing
(empty circles) ramps. Error bars are the standard error of the
mean of 10–20 measurements.
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quantum, and technical fluctuations [42]. The model is not
exact, as it describes the transition with the variation
of a single parameter, the contrast C̃, while from the
numerical simulations we observe a global change of the
wave function. See Appendix A 3 for details and further
discussions. However, there is a qualitative agreement
between the experiment and the model, in terms of both
the characteristic contrast at the discontinuous transition
and the characteristic energy gained by crossing the dis-
continuous transition. The height of the barrier at the
transition in Fig. 9(d) is indeed about 5 nK, which is of
the same order of both the energy gain in Fig. 8 and the
system temperature.
In conclusion, the different shape of the fluctuation

spectra of the contrast provides an additional evidence of
the different character of the two phase transitions, con-
tinuous for potential VC and discontinuous for VD.

VI. DISCUSSION AND CONCLUSIONS

In summary, we assessed the character of the superfluid-
supersolid quantum phase transition. By tuning the system
parameters, we observed a gradual change from 1D-like
configurations with continuous phase transitions into
2D-like configurations with discontinuous phase transi-
tions. The dimensional crossover is due to the very nature
of the supersolid. Although our supersolids have only a
single row of principal density maxima, they keep a
2D structure thanks to the presence of the background
density associated to their superfluid nature. The 2D struc-
ture is gradually suppressed by an increasing transverse

confinement or an increasing atom number. Our analysis
establishes also a link between previous numerical simu-
lations for infinite systems, showing that the discontinuous
transition seen in quasi-1D at low density [25] has the same
nature of the discontinuous transition in 2D [22].
The continuous-discontinuous character of the transition

is controlled experimentally by changing the transverse
confinement. We achieve various evidences of the different
character of the transition in the two regimes, in particular
from the striking difference in the adiabaticity with which
the phase transition can be crossed, besides the different
shape of the fluctuation spectrum. The continuous tran-
sition can be crossed almost adiabatically despite the
limited timescales of the experiment, with a residual energy
increase of just about 0.5 nK. The discontinuous transition
is quite sharp despite the very small length of the supersolid
lattice, which has only 2–3 sites. That supports the expect-
ation that broadening effects are determined by the number
of particles (N ≃ 104 here) and not by the number of
sites [43].
Our findings have implications for future studies of the

supersolid phase of matter. Crossing continuous quantum
phase transitions we achieve supersolids that are almost
free of excitations. This is an important prerequisite to
study a key property of supersolids, the reduced super-
fluidity due to the crystal-like structure [4]. Our results can
be extended directly to annular configurations, which are
the ideal setup to study superfluidity [4,24,44] and would
also allow us to eliminate the longitudinal harmonic
potential without the edge effects introduced by boxlike
potentials [45]. A sufficiently tight radial confinement will

FIG. 9. Character of the phase transition from fluctuation spectra. (a),(b) Histograms of the contrast fluctuations for potential VC (a)
and for potential VD (b). Panels correspond to the following scattering length intervals (in units of a0). VC: 101–96.5 (I), 96.5–92.5 (II),
92.5–89.8 (III), 89.8–86 (IV). VD: 101–96.7 (I), 96.7–92.3 (II), 92.3–90.3 (III), 90.3–86 (IV). Each region contains 100–150 samples.
(c),(d) Theoretical model of the Landau free energy for VC (c) and VD (d), for scattering lengths spaced by 1.0a0 and 0.25a0 around the
central values 94a0 and 90a0, respectively. Single- and double-peak structures in the experimental data in region II for VC and VD are in
qualitative agreement with the theoretical model close to the transition, dark lines in (c) and (d).

DIMENSIONAL CROSSOVER IN THE SUPERFLUID- … PHYS. REV. X 12, 021019 (2022)

021019-9



allow us to achieve continuous phase transitions, in analogy
with the 1D-like configurations we explored in this work.
The control of continuous quantum phase transitions opens
up also the possibility to study the generation of entangle-
ment in the supersolid phase. Indeed, the increase of
correlations in a quantum transition can lead to the creation
of many-body entanglement [46]. Crossing adiabatically a
continuous transition would limit the impact of noise and
decoherence which usually leads to degradation of fragile
entangled states. Understanding quantum correlations in
the supersolid would be an important step both for
developing a full quantum description of this new phase
of matter and for the possible exploitation of metrologically
useful entangled states [47].
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APPENDIX A: LANDAU MODEL FOR THE
DIPOLAR SUPERSOLID

In this Appendix, we discuss in more detail the super-
fluid-supersolid phase transition in the framework of the
Landau theory. Generally, for crystallization transitions the
order parameter is complex: C ¼ jCjeiϕ, where ϕ deter-
mines the phase of the supersolid lattice. In infinite systems
there is no energy cost in changing ϕ, see, for example, the
case of lattice supersolids [13,21], which corresponds to the
appearance of a zero-energy Goldstone mode, a signature
of continuous symmetry breaking [38]. In that case, one can
neglect the phase dependence of the free energy and take C
to be real. In the presence of a trap, the energy depends also
on ϕ and one should build a Landau model with a complex
order parameter. For dipolar supersolids, however, it was
shown that the associated Goldstone mode has a much
lower energy than the amplitude mode [9]. This allows us
again to neglect the phase and consider C real, as we do in
this work.

1. 1D system

First, we consider the case of a 1D density modulation of
the form ρðxÞ ¼ ρ0½1þ C cosðkxÞ� that provides a good
characterization of the one-row configuration. Inserting this
ansatz into the energy functional Eq. (1) and expanding in
powers of C leads to a Landau expansion of the form of
Eq. (2), where the coefficients depend on the wave vector k,
the mean density ρ0, and the scattering length as. The

odd terms are exactly vanishing, as a consequence of the
symmetry in the sign of the contrast discussed in the main
text. Both contact and dipolar energies contribute only to
the quadratic coefficient b1D, since they are quadratic in the
density. The coefficient b1D decreases as the scattering
length is decreased, and becomes negative when the
attractive part of the dipolar interaction dominates, favoring
the formation of the supersolid state. The other coefficients
are determined only by the kinetic and LHY energy, which
are a more complicated function of the density. The fourth-
and the sixth-order coefficients d1D and e1D read

d1D ¼ ℏ2π

32m
jkjρ0 −

15πgLHY
512jkj ρ5=20 ;

e1D ¼ ℏ2π

64m
jkjρ0 −

25πgLHY
8192jkj ρ

5=2
0 ; ðA1Þ

where the coefficient of the LHY energy gLHY is defined
after Eq. (B 1). In the experimental density regimes, the
contribution of the kinetic energy (first term on the right-
hand sides) dominates over that of the LHY (second term).
The coefficient d1D is then positive and the next-order
term of the form e1DC6 does not change the scenario of a
continuous phase transition. When instead the density is
large enough, quantum fluctuations overcome the kinetic
energy reversing the sign of d1D. To ensure stability of the
system, one has to consider the term e1DC6. The resulting
Landau energy ΔE ¼ b1DC2 þ d1DC4 þ e1DC6 predicts a
discontinuous phase transition with the combination
b1D > 0; d1D < 0; e1D > 0. The shape of the energy is
depicted in Fig. 2(b). This mechanism justifies the discon-
tinuous phase transitions at high densities and high trap
frequencies depicted in gray in Fig. 3.
The previous simple model can be extended to include

the effects of the trap. We modify the density ansatz into
ρðxÞ ¼ ρ0gðxÞ½1þ C cosðkxÞ�, where gðxÞ is a Gaussian
envelope of width σ which contains the proper normali-
zation constant. As a result of the presence of the envelope,
the symmetry in the sign of the contrast is broken. The two
density distributions with C and −C are indeed slightly
different, since they have the main maximum and the
central minimum at the center of the trap, respectively.
Consequently, odd terms appear in the Landau energy. We
have checked that odd terms are below 10% of the even
terms in the relevant regime in which more than one cluster
is present, and approach zero when many clusters are
present, i.e., when kσ is large. The presence of the trap
introduces also linear terms in the contrast. In particular, the
trap energy is proportional to the density, so it contributes
only to the linear term. The interpretation of this fact is
clear: a state with C > 0 is favorable in trap energy
compared to a superfluid with C ¼ 0, since it increases
the density in the center of the trap and forms lateral
minima where the trap potential is higher. The presence
of a trap-induced linear term in the Landau energy can
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explain the mixing of continuous and discontinuous phase
transitions observed in the simulations. Indeed, in configu-
rations where the transition is discontinuous, the presence
of a linear term can induce a continuous transition toward
states of small contrast, followed by a jump toward the
second minimum at higher contrast.

2. 2D system

In the 2D infinite case, the full calculation of the Landau
energy with a sinusoidal ansatz of the form Eq. (3)
was reported in Ref. [22]. We checked to what extent
this model applies to our case with a harmonic potential
in the y direction, modifying the ansatz into ρðx; yÞ ¼
ρ2Dðx; yÞgðyÞ, where ρ2D is given by Eq. (3) and gðyÞ is a
Gaussian envelope in the transverse y direction of width σ.
The expansion coefficients are equal to the thermodynamic
limit in 2D until σk=ð2πÞ approaches 0.4, a regime in which
the first lateral rows of clusters are already suppressed to
approximately 10%. That is not dissimilar from the results
of the numerical simulations in Fig. 4, which show the
change to continuous transitions when the lateral rows are
suppressed to a similar level.

3. Landau model for the experimental configurations

To estimate the Landau free energy for the experimental
configurations, we developed a specific model. To take into
account the effect of the trap confinement, we modify
ansatz (3) into

ρðrÞ ¼ A

�
1þ Ce−x

2=2w2
x

X
i

cosðki · r0Þ
�

× ð1 − x2=R2
xÞe−y2=2σ2yð1 − z2=R2

zÞ; ðA2Þ

where we add a Gaussian envelope of width σy in the y
direction and a Thomas-Fermi envelope of radius Rx (Rz)
in the x (z) direction. The lattice vectors are k1 ¼ 2π=
λð0; 1; 0Þ, k2 ¼ −2π=λð ffiffiffi

3
p

=2; 1=2; 0Þ, k3 ¼ 2π=λð ffiffiffi
3

p
=2;

−1=2; 0Þ, ffiffiffi
3

p
λ is the lattice period, C is the contrast,

r0 ¼ ðx − ffiffiffi
3

p
λ; y; 0Þ, and A is a normalization constant. We

also add a Gaussian envelope for the sinusoidal modulation
with width wz to get a better agreement with the simulated
density distributions; see Fig. 10.
To calculate the free energy as a function of C, we

integrate numerically the energy functional Eq. (1) with
ansatz (A2). We set all the other parameters to realistic
values obtained from the numerical simulations of the
ground state, Rx ¼ 8.1lx (Rx ¼ 5.6lx), σy ¼ 0.64ly

(σy ¼ 0.46ly), Rz ¼ 4.9lz (Rz ¼ 5.1lz), wx ¼ 2.1lx

(wx ¼ 1.9lx), λ ¼ 1.6lx (λ ¼ 1.9lx) for trap VC (VD).
This approximation allows us to study the free energy as a
function of the order parameter only. For a better com-
parison with the experimental and numerical data, we

express the energy as a function of C̃, calculated from
the Fourier transform of the wave function.
The results for the two experimental potentials VC and

VD are plotted in Fig. 9 for various values of the scattering
length across the phase transitions. As discussed in Sec. III,
C̃ scales as C2, so the shape of the free-energy curves is
somewhat different from those in Fig. 2. The model
correctly reproduces the character of the transition for
the two potentials: while for potential VC the minimum of
the energy smoothly increases from C̃ ¼ 0 to C̃ > 0, for
potential VD a second minimum develops by lowering the
scattering length, resulting in a finite jump of C̃ at the
transition. For potential VC, the critical scattering length is
around 96a0, slightly above the numerical value of 94a0.
For potential VD the transition is at 90a0 instead of 91.9a0.
For both VC and VD the value of the contrast at the
transition is of the same order of that calculated in the
numerical simulations (see Fig. 5).

APPENDIX B: NUMERICAL SIMULATIONS OF
THE PHASE TRANSITION IN EQUILIBRIUM

1. Numerical methods

In this Appendix, we present the methodology followed
for the numerical simulations of the equilibrium phase
diagram and we discuss the additional analysis employed to
characterize the phase diagram. The system is described in
terms of a generalized Gross-Pitaevskii theory including

FIG. 10. Comparison between the ground-state simulations and
ansatz (A2). (a),(b) Black points are the integrated density along x
(a) and y (b) directions for potential VC. Solid lines are 1D cuts of
ansatz (A2) fitted to the simulated densities. (c),(d) Same for
potential VD. Simulations correspond to supersolid states just
after the transition (94.25a0 for VC and 91.94a0 for VD).
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the beyond-mean-field Lee-Huang-Yang correction. The
energy functional is E ¼ Emf þ Edd þ ELHY with

Emf ¼
Z �

ℏ2

2m
j∇ψðrÞj2 þ VhoðrÞρðrÞ þ

g
2
ρ2ðrÞ

�
dr;

Edd ¼
Cdd

2

ZZ
ρðrÞVddðr − r0Þρðr0Þdrdr0;

ELHY ¼ gLHY

Z
ρ5=2ðrÞdr; ðB1Þ

where ρðrÞ ¼ jψðrÞj2 represents the condensate density,
VhoðrÞ ¼ ðm=2ÞPα¼x;y;z ω

2
αr2α the harmonic trapping, g ¼

4πℏ2as=m is the contact interaction strength, VddðrÞ ¼
ð1 − 3 cos2 θÞ=ð4πr3Þ the (bare) dipole-dipole potential,
Cdd ≡ μ0μ

2 its strength, μ the modulus of the dipole
moment μ, r the distance between the dipoles, and θ the
angle between the vector r and the dipole axis, cos θ ¼
μ · r=ðμrÞ [48]. The orientation of the magnetic dipoles is
along the z direction (the direction of the magnetic field B).
TheLHYcoefficient is gLHY¼½ð256 ffiffiffi

π
p Þ=15�½ðℏ2a5=2s Þ=m�×

ð1þ 3
2
ϵ2ddÞ, with ϵdd ¼ μ0μ

2N=ð3gÞ [49].
The ground state of the system is obtained by minimizing

the energy functional E½ψ � by means of a conjugate
algorithm; see, e.g., Refs. [48,50,51]. In the numerical
code the double integral appearing in Eq. (B 1) is mapped
into Fourier space where it can be conveniently computed
by means of fast Fourier transform (FFT) algorithms, after
regularization. The LHY correction in Eq. (B 1) is obtained
from the expression for homogeneous 3D dipolar con-
densates under the local-density approximation [49,52].
To obtain the contrast in Fourier space C̃ from the

ground-state density distributions, we first compute
jF ½ ffiffiffiffiffiffiffiffiffi

ρðxÞp �j2, where ρðxÞ is the column density integrated
along the transverse trap direction y. The order parameter C̃
is given by the height of the first lateral peak relative to the
central one. A simple relation between real space C and C̃
can be derived in the 1D infinite case discussed in
Appendix A. In the limit C ≪ 1, we find C̃ ¼ C2=16.

2. Additional data of numerical simulations

Figure 11 shows data supporting the discussion in
Sec. III about the compressibility of the supersolid and
the onset of the LHY-dominated regime, for the transitions
at the center of the crossover. Figure 11(a) shows the
transverse width σy normalized to that of a noninteracting

system, ly=
ffiffiffi
2

p
. For νy > 70 Hz the values are very close

to 1, in agreement with the expectation that, at the
transition, attractive dipolar and repulsive contact inter-
actions tend to cancel out. Since σy is slightly less than

ly=
ffiffiffi
2

p
, the dipolar interaction is slightly larger than the

contact interaction. For smaller frequencies, instead, one
notes a very rapid increase of the peak density [Fig. 11(c)].

This brings the system into a regime in which the LHY
energy has an important role in limiting further density
increases, due to its ρ5=2 dependence, by increasing the
transverse size of the clusters. Hence, σy becomes larger than
the noninteracting width. In Fig. 11(b), we observe the same
features in the deformation parameter βss ¼ hx2 − y2i=hx2 þ
y2i of the central supersolid clusters. In an unconfined 2D
system, the natural shape of the clusters in the x-y plane is
circular, so that βss ¼ 0. In the trapped system studied in the
main text, this happens only in a limited range of transverse
trapping frequencies around νy ¼ 60 Hz. For larger frequen-
cies, theclustersget squeezedbythe transverse trap,soonehas
βss > 0. For smaller frequencies, in the LHY regime, the
clusters become elongated in the transverse direction and
βss < 0. This is the “stripe” regime found also in other
numerical studies [23,39].
A different effect of the LHYenergy term arises for large

transverse confinements and large N, leading to a second
change from continuous to discontinuous transitions, as
shown in Fig. 3(a). Figure 12 shows an example of the
discontinuous transition in such a regime. The character-
istic features are (1) the supersolid initially forms contin-
uously in the regions with intermediate density, where the
LHY term is not too large, and not at the center as usual
(a similar effect was observed numerically in Ref. [7]),
(2) in a second stage, the supersolid forms also in the center,
via a discontinuous transition since the LHY term there is
large, (3) the discontinuous transition is accompanied by
the opposite of the standard magnetostriction effect, i.e., the

FIG. 11. Characterization of the supersolid structure for the
transitions at the continuous-discontinuous boundary. (a) Trans-
verse width σy, (b) deformation parameter βss of the central
supersolid clusters, and (c) peak density versus transverse trap
frequency. Insets: examples of the supersolid density distributions
in the x-y plane.
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transverse size increases when the supersolid forms, to
reduce the density increase, (4) the discontinuous transition
is weak, because it regards only a small fraction of the
system. All these effects are a consequence of the peculiar
dependence of the LHY energy term on the density ρ5=2,
which results in a stronger variation of the LHY term along
the system than the contact and dipole-dipole terms.

APPENDIX C: EXPERIMENTAL METHODS
AND ANALYSIS

1. Experimental sequence

The experiments start with a Bose-Einstein condensate
(BEC) of about 8 × 104 162Dy atoms in a crossed optical
trap. In previous experiments, we measured typical temper-
atures in the range 3–10 nK, through free-expansion
measurements in the supersolid regime, following a dis-
continuous transition [5]. The condensate is initially
prepared at a magnetic field B ≃ 5.5 G, corresponding to
a scattering length of about 140a0. The magnetic field is
then slowly changed toward the critical values for the phase
transition into the supersolid, close to the set of Feshbach
resonances around 5.3 G [5], with a resolution of 1 mG.
The magnetic field is calibrated via radio-frequency spec-
troscopy before and after each experimental run, lasting
typically 3–4 h. The magnetic field stability is about
0.5 mG, corresponding to a stability in scattering length
of about 0.3a0. For the conversion from magnetic field
to scattering length, we adopt the model presented in
Ref. [53]. The relatively large uncertainty in the

background scattering length results in a global systematic
uncertainty of severala0 in the experimental scattering length
atwhich the transitions take place. In all experimental figures
we applied a shift to the scattering length to get a matching
between the transition point identified in the experiment and
that from ground-state simulations in potential VD. We
identify the experimental transition point from the jump in
the atom number; see Fig. 15. The resulting shift amounts to
6.7a0. This analysis does not take into account the shift of the
dynamical phase transition with respect to the equilibrium
one, which we estimate to be of the order of 0.5a0; see
Appendix D.
At the end of each experimental sequence, we suddenly

switch off the optical potential and we let the system expand
for 90 ms in the presence of a magnetic-field gradient that
compensates gravity. About 200 μs before the release of the
atoms we increase the contact interaction strength by setting
as ≃ 140a0 in about 1 ms, thus minimizing the relative
effects of the dipolar interaction on the expansion. This
helps in preserving characteristic properties such as the
contrast and the period of the momentum distribution [6].
We finally measure the atomic density, which we interpret
as the momentum distribution ρðkx; kyÞ, by absorption
imaging on the strong optical transition at 421 nm.

2. Contrast

The presence of the supersolid density modulation is
revealed by the characteristic side peaks in the momentum
distribution, as depicted in the insets of Fig. 6(a). To extract
the contrast C̃, as a function both of the scattering length
and of time, we analyze each image following these steps.
First, we rotate the momentum distribution in the plane to
align the interference peaks along the kx direction. Second,
we integrate over ky to get the 1D momentum distribution
ρðkxÞ. Third, we fit ρðkxÞ with a double-slit model,

ρðkxÞ ¼ A0e−ðkx−k0Þ
2=2σ2f1þ A1 sin ½πðkx − k0Þ=kr þ φ�g;

ðC1Þ

where A0, k0, and σ are, respectively, the amplitude, center,
and width of the envelope, while A1, kr, and φ are the
amplitude, period (in momentum space), and phase of
the modulation. The typical experimental image has a
phase of π=2 (see Fig. 14), corresponding to a central peak
and two lateral, symmetric peaks. To get a contrast C̃
unbiased from fluctuations of the phase around π=2, we
rephase the fitted function imposing φ ¼ π=2 and we
define C̃ ¼ maxL =maxC, where maxC and maxL are
the values of the central and first lateral maxima, respec-
tively (see Fig. 13). Since the lateral maximum in the
superfluid phase does not exist, we should get C̃ ¼ 0 in
this regime. However, trying to fit a superfluid profile with
the double-slit function Eq. (C1), the fit can force the
presence of small maxima in the slope of the superfluid

FIG. 12. Discontinuous transition in the LHY-dominated re-
gime, (νy ¼ 400 Hz, N ¼ 7 × 104). (a) Contrast C̃ as a function
of the scattering length. Note the initially continuous transition
around 95.5a0, followed by a discontinuous one around 94.2a0.
The insets show that the modulation initially forms on the sides
of the distribution. (b) Behavior of σy across the transition,
demonstrating the inverse magnetostriction provided by the
LHY term.
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and give fictitious nonzero values of C̃. To overcome
this problem, we use a different observable defined as
C̃2 ¼ ðmaxL −minÞ=ðmaxL þminÞ, where min is the first
lateral minimum, and we set C̃ ¼ 0 if C̃2 ¼ 0. The reason is
that the observable C̃2 is automatically zero in the superfluid
phase, since eventual fictitious lateral peaks practically
coincide with their corresponding minimum. However, we
donot take C̃2 as ameasurement of the contrast since it is very
sensitive to the atom number, which is lower and lower
entering the supersolid state, due to three-body losses.
Typically, C̃2 has a maximum lowering the scattering length
and then starts decreasing. Thus, we use C̃2 only to
distinguish between superfluid and supersolid images.
When studying the contrast as a function of time, the

fitting function is a damped sinusoid of the form

C̃ðtÞ ¼ A sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πνÞ2 − τ2
q

tþ ϕ0

�
e−t=τ þ off1tþ off2;

ðC2Þ

where ν is the frequency of the oscillation and τ the
damping time. We fit with the same function also other
observables which allow a direct comparison between the
BEC and the supersolid, for example, the longitudinal
width σx which features the breathing-mode oscillation [8].
From measurements performed at different values of the
scattering length, see, e.g., Figs. 6(d) and 6(e), we find that
the damping time decreases about an order of magnitude
going from the BEC to the supersolid. For example, in the
discontinuous potential VD, we get τ ¼ ð100� 41Þ ms at
94.3a0 and τ ¼ ð15� 5Þ ms at 87.4a0.

3. Phase fluctuations

We verified that the measured momentum distributions
ρðkxÞ in the supersolid regime show phase coherence, the

property that distinguishes a supersolid from a crystal of
independent droplets [5]. In Fig. 14 we plot the phase φ of
the momentum distribution after crossing the transitions.
For both potentials VC and VD we divide the data into two
groups: just after the transition point, see Fig. 14(a),
corresponding to the intervals ð89–93Þa0 for VC and
ð90–92Þa0 for VD, and deeper into the supersolid regime,
see Fig. 14(b), intervals ð86–89Þa0 forVC and ð88–90Þa0 for
VD. All datasets have a variance lower than a uniform
distribution, σ2φ ¼ π2=12 ≃ 0.8, demonstrating the phase
coherence of the supersolid. Interestingly, the value of
the variance in the discontinuous trap is larger than in the
continuous one. For potential VD, σ2φ ¼ 0.17 close to the
transition point, while the distribution broadens to σ2φ ¼
0.48 at lower scattering lengths, in agreement with results
reported in Ref. [5] where the phase transition was observed
to be discontinuous. Instead, for potential VC the phase
distribution is much narrower, with σ2φ ¼ 0.035 and σ2φ ¼
0.055 for the two datasets. This observation demonstrates
that the different character of the two transitions also affects
the phase excitations in the supersolid regime, other than the
amplitude excitations discussed in the main text.

4. Atom number

In the experiment, the atom number tends to decrease as
one moves from the superfluid into the supersolid phase,
due to three-body losses, dN=dt ¼ −K3ρ

2, as depicted in
Fig. 15. The losses increase mainly because ρ increases,
while K3 is approximately constant. In both cases, one
reaches the supersolid regime with about 40% of the initial
N. On the way back, N stays approximately constant, since
the density decreased during the permanence in the super-
solid regime and losses are less effective. The similar
behavior of the atom number across the transitions shows
that losses are similar in the two traps. The atom number in

FIG. 13. Example of experimental 1D momentum distribution
ρðkxÞ obtained after a time-of-flight experiment in the supersolid
regime of potential VD. Black dots are experimental data, while
the gray line is the fit using the double-slit function of Eq. (C1).
The red line is the same fitted function after fixing the phase to
π=2. The highlighted points are the central maximum maxC, the
lateral maximum maxL, and the intermediate minimum (min)
used in the definition of the observables C̃ and C̃2 (see text).

FIG. 14. Phase distributions of the interference pattern in
potential VC (magenta) and potential VD (blue) just after the
transition (a) and deeper in the supersolid regime (b). The shaded
areas correspond to φ̄� σ2φ, with φ̄ the average phase and σ2φ the
variance.
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the supersolid quoted in the main text (N ¼ 3 × 104)
corresponds to the measured atom number just after
the transitions, with an uncertainty δN ¼ �5 × 103. We
checked in the simulations that in this interval of N the
character of the phase transitions does not change, for both
potentials.

5. Expansion energy

We use the momentum distributions ρðkx; kyÞ also to
extract the expansion energy, as shown in Fig. 8. First, we
compute δρ ¼ ρ − hρi, subtracting from each distribution
in the dataset the average of all the images for the
corresponding harmonic potential (800 and 500 images
for potentials VD and VC, respectively). The excess energy
E − hEi is given by

ΔEraw ¼
�
ℏ2

2m

�Z
δρðkx; kyÞk2dkxdky: ðC3Þ

Since we use normalized momentum distributions,R
ρðkx; kyÞd2k ¼ 1, Eq. (C3) gives the energy per particle.

In order to eliminate the effect of atom losses, the data are
corrected taking into account the correlations between
energy ΔEraw and the atom number, given mainly by the
repulsive interactions which cannot be neglected during the
expansion. As shown in Fig. 16, we use a linear regression
of the form ΔEraw ¼ γN þ ΔE0, to determine correlations
in subsets with similar N, corresponding to different
regions in scattering length. Raw data are then rescaled
using the relation,

ΔE ¼ ΔEraw − γiðN − N̄Þ; ðC4Þ

where N̄ is the average atoms number in the superfluid side.
In this way ΔE is increased for data with N < N̄ and

decreased in the opposite case, by an amount proportional
to γi for each subset. In Fig. 8, we show the mean value of
data obtained from Eq. (C4).

6. Adiabaticity

To confirm the different character of the transitions in
potentials VC and VD, we checked that the different degree
of adiabaticity persists in the whole range of ramp speeds
accessible in the experiment.
In a first type of experiment, we crossed twice the

transition for both VC and VD, similarly to the main
experiment shown in Fig. 6, but with a variable ramp
speed. Besides the standard speed of 0.5a0=ms of the main
experiments, we employed a speed slower by a factor of 2
and a speed faster by a factor of 2. For both VC and VD, the
ramp starts from the superfluid side, waits 15 ms on the
supersolid side, about 2a0 below the transition, and then
ends again on the superfluid side, about 4a0 above the
transition. To take into account excited modes of the
supersolid, we averaged samples detected after waiting
times of 10, 20, and 30 ms. The results are shown as open
circles in Fig. 17. The contrast for VD is always larger than
the one for VC, but both show an approximately linear
increase for increasing ramp speeds. This implies that
crossing twice the transition into a well-formed supersolid
has a speed-dependent contribution for both continuous
and discontinuous transitions. We attribute it to the finite
formation time of the supersolid, about 15 ms, which is of
the same order as the characteristic period of the collective

FIG. 15. Evolution of the atom number during the ingoing
(filled symbols) and outgoing ramp (open symbols), respectively,
for potential VD (a) and VC (b). Error bars are the standard
deviation of the mean of 10–20 measurements. The atom number
is normalized to its maximum value on the BEC side. FIG. 16. Analysis of the expansion energy presented in Fig. 8.

As an example we show the experimental data for the ingoing
ramp in the potential VD. Panels (a) and (b) show excess energy
(raw data) and atom number as a function of the scattering length.
The horizontal dashed line marks the average atom number N̄ in
the superfluid side. Different colors correspond to the subsets in
(c)–(f) where the solid lines are the linear regressions used to
rescale raw data in (a) using Eq. (C4).
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oscillations in the contrast. Since the ingoing ramp duration
is not much longer than the formation time, the supersolid
does not form with the lowest energy available.
Note that the larger final contrast for VD than for VC

persists also extrapolating to zero ramp speed with a linear
fit (dashed lines in Fig. 17). This confirms that the former
transition is discontinuous. We attribute instead the zero-
speed intercept for VC to atom losses, which leads to a loss
of adiabaticity in the long-time limit.
In a second type of experiment with potential VD,

we ramped the scattering length from the superfluid side
into the strongly fluctuating region just prior to the
stable formation of the supersolid (about 92.5a0). We then
selected only the samples with a finite contrast, discarding
those still on the superfluid side. This procedure allows us
to study the supersolid just after the transition. To allow for
the formation of the supersolid, we employed a minimum
waiting time of 15 ms. Also in this case we averaged
samples detected after waiting times of 10, 20, and 30 ms.
The mean value of the contrast for varying ramp speed is
shown in Fig. 17 as filled circles. One notes that the mean
contrast stays approximately constant, confirming the
discontinuous character of the phase transition.

APPENDIX D: NUMERICAL SIMULATIONS
OF THE DYNAMICS

We simulated the evolution of the system when crossing
the phase transitions in potentials VC and VD by solving the
Gross-Pitaevskii equation iℏ∂tψ ¼ δE=δψ�, by using the
FFT split-step method discussed in Ref. [54]. The typical
size of the numerical box is 24 μm per side, each
discretized in 128 points.
We found that the speed of the ramp in scattering length

employed in the experiment, 0.5a0=ms, in the simulations

produces effects more similar to a sudden quench of
the scattering length than to an adiabatic transformation.
This is presumably due to the lack of dissipation in the
simulations. A ramp slower by one order of magnitude,
0.06a0=ms, results instead in a quasiadiabatic crossing of
the phase transition in potential VC, see Fig. 18, similarly
to the experiment. For such a ramp speed, the simulations
for the potential VD show an increase of energy of about
1 nK, which is of the same order of magnitude of the
experimental observation. A quantitative comparison of the
energies in the experiment and in the simulations is not
possible, mainly because of the increased contact energy in
the expansion phase of the experiment. Note indeed that
while the simulated energy decreases while lowering as,
mainly because of the decrease of contact energy, the
experimental energy in Fig. 8 increases, because higher
densities enhance the effect of the repulsive contact
interaction during the expansion.
Samples of the dynamics for VC are shown in Fig. 7 and

discussed in the main text. The simulations for potential VD
feature a similar behavior, i.e., excitation of collective
modes of the supersolid and of the superfluid for the
ingoing and outgoing ramps, respectively. The number of
modes is, however, larger than for potential VC, in agree-
ment with both the larger number of modes observed in
the experiment and the larger excitation energy of Fig. 18.
In general, the simulations feature a larger number of
modes than the experiment, presumably because they lack
the dissipation that is instead present in the experiment.

FIG. 17. Adiabaticity versus ramp speed. Contrast after a ramp
from the superfluid to the onset of the supersolid (filled circles)
and after crossing twice the transition (open circles), for poten-
tials VC (magenta) and VD (blue). Error bars are the standard
deviation of the mean. Dashed lines are linear fits and colored
bands are the confidence intervals at one standard deviation.

FIG. 18. Simulated energies during a slow ramp across the two
phase transitions studied in the experiment. Total energy versus
scattering length for the continuous (a) and discontinuous
(b) cases. Different lines are associated to the ingoing ramp
(solid line), the outgoing ramp (dashed line), and the ground-state
energy (black line).

GIULIO BIAGIONI et al. PHYS. REV. X 12, 021019 (2022)

021019-16



We also studied the hysteresis for the discontinuous
transition in potential VD, in the hypothetical scenario
in which the transition is crossed in both directions
starting from the ground state of the system. The amplitude
of the hysteresis cycle is about 0.5a0, for a holding time
thold ¼ 40 ms. Previous simulations for a configuration
close to that of potential VD found a similar result [6].
The hysteresis tends to disappear if one instead crosses the
transition twice from the superfluid side, remaining on an
excited state of the supersolid, similarly to the experimental
scenario.
In conclusion, although the present simulations cannot

reproduce quantitatively the observations, possibly because
they do not account for temperature and dissipation effects,
they support the experimental observation of a different
behavior of the amplitude mode and of the energy for the
continuous and discontinuous transitions, as well as the
excitation of a collective mode of the superfluid following
the outgoing ramp.
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