10 research outputs found

    LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/ÎČ-catenin signalling in neuroblastoma.

    Full text link
    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of ÎČ-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5

    Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport

    Get PDF
    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell.1,2 The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions.3,4 No prior structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide important new structural information about the HME sub-family of RND efflux pumps. The structures suggest that the metal binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. Intriguingly, this cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal binding site, four methionine pairs - three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, utilizing these methionine pairs/clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites

    LGBTQ parenting post heterosexual relationship dissolution

    Get PDF
    The chapter examines parenting among sexual and gender minorities post heterosexual relationship dissolution (PHRD). Reviewing the literature around intersecting identities of LGBTQ parents, we consider how religion, race, and socioeconomic status are associated with routes into and out of heterosexual relationships and variation in the lived experience of sexual and gender identity minorities, in particular how LGBTQ parents PHRD feel about being out. Further consideration is given to examining how family relationships change and develop as parental sexual and/or gender identity changes. We also explore the impact of PHRD identity and parenthood on new partnerships and stepfamily experiences. The chapter addresses the reciprocal relationship between research on LGBTQ parenting and policy and legal influences that impact upon the experience of LGBTQ parenting PHRD when custody and access are disputed. Finally, the chapter includes future research directions and implications for practice in an area that has been revitalized in recent years

    Ecological Aspects of Neophobia and neophilia in birds

    No full text

    Controlling Parameters on Facies Geometries of the Bahamas, an Isolated Carbonate Platform Environment

    No full text
    The Bahamas are among the most extensively studied carbonate regions in the world, and a number of phenomena typical of calcareous environments have been first observed in the Bahamas. Early geological research in the Bahamas was undertaken by Nelson (1853B) who surveyed their geography and topography. He noticed the “remarkable lowness of profile” and the dynamics of construction and destruction of the islands, outlined the biota and lithologies, described the formation of the carbonate rocks, and noticed the eolian origin of many Bahamian islands. Forty years later, the examination of modern carbonate environments rapidly progressed with the expedition of L. and A. Agassiz in 1893 (Agassiz 1894). Their explorations focused mainly on the fringing reefs of GE Great Bahama Bank. Research on abiotic carbonate components followed, by Vaughan (1914) who emphasized that carbonate constituents can originate from both skeletal secretion and chemical precipitation, and introduced the terms “organic” and “inorganic” limestones. Black (1933) first characterized the sedimentary facies on Great Bahama Bank and noted the significance of the widespread aragonitic mud. The sand-sized calcareous components of the Bahamas and their origin, including ooid sands, were described in detail in the classic papers by Illing (1954) and Newell et al. (1960)
    corecore