4,624 research outputs found
QCD and Hadron Dynamics
Perturbative QCD predicts and describes various features of multihadron
production. An amazing similarity between observable hadron systems and
calculable underlying parton ensembles justifies the attempts to use the
language of quarks and gluons down to small momentum scales, to approach the
profound problems that are commonly viewed as being entirely non-perturbative.Comment: Talk at the Royal Society meeting "Structure of Matter", London, May
200
The Theory of the Nucleon Spin
I discuss two topics of current interest in the study of the spin structure
of the nucleon. First, I discuss whether there is a sum rule for the components
of the nucleon's angular moments. Second, I discuss the measurement of the
nucleon's transversity distribution in light of recent results reported by the
HERMES collaboration at DESY.Comment: 15 pages, 8 figures, LaTeX using rspublic.cls and BoxedEPS macros; as
submitted to Phil Trans A of the Royal Society for forthcoming volume: The
Quark Structure of Matter; email correspondence to [email protected]
Photon Structure and Quantum Fluctuation
Photon structure derives from quantum fluctuation in quantum field theory to
fermion and anti-fermion, and has been an experimentally established feature of
electrodynamics since the discovery of the positron. In hadronic physics, the
observation of factorisable photon structure is similarly a fundamental test of
the quantum field theory Quantum Chromodynamics (QCD). An overview of
measurements of hadronic photon structure in e+e- and ep interactions is
presented, and comparison made with theoretical expectation, drawing on the
essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the
Royal Society of London (Series A: Mathematical, Physical and Engineering
Sciences
Structural and dynamical properties of liquid Si. An orbital-free molecular dynamics study
Several static and dynamic properties of liquid silicon near melting have
been determined from an orbital free {\em ab-initio} molecular dynamics
simulation. The calculated static structure is in good agreement with the
available X-ray and neutron diffraction data. The dynamical structure shows
collective density excitations with an associated dispersion relation which
closely follows recent experimental data. It is found that liquid silicon can
not sustain the propagation of shear waves which can be related to the power
spectrum of the velocity autocorrelation function. Accurate estimates have also
been obtained for several transport coefficients. The overall picture is that
the dynamic properties have many characteristics of the simple liquid metals
although some conspicuous differences have been found.Comment: 12 pages, 11 figure
On astrophysical solution to ultra high energy cosmic rays
We argue that an astrophysical solution to UHECR problem is viable. The
pectral features of extragalactic protons interacting with CMB are calculated
in model-independent way. Using the power-law generation spectrum as the only assumption, we analyze four features of the proton
spectrum: the GZK cutoff, dip, bump and the second dip. We found the dip,
induced by electron-positron production on CMB, as the most robust feature,
existing in energy range eV. Its shape is
stable relative to various phenomena included in calculations. The dip is well
confirmed by observations of AGASA, HiRes, Fly's Eye and Yakutsk detectors. The
best fit is reached at , with the allowed range 2.55 - 2.75. The
dip is used for energy calibration of the detectors. After the energy
calibration the fluxes and spectra of all three detectors agree perfectly, with
discrepancy between AGASA and HiRes at eV being not
statistically significant. The agreement of the dip with observations should be
considered as confirmation of UHE proton interaction with CMB. The dip has two
flattenings. The high energy flattening at eV
automatically explains ankle. The low-energy flattening at eV provides the transition to galactic cosmic rays. This transition is
studied quantitatively. The UHECR sources, AGN and GRBs, are studied in a
model-dependent way, and acceleration is discussed. Based on the agreement of
the dip with existing data, we make the robust prediction for the spectrum at
eV to be measured in the nearest future by
Auger detector.Comment: Revised version as published in Phys.Rev. D47 (2006) 043005 with a
small additio
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
- …
